Structural Single State Mutinex Logic

Wolfgang Scherer

Wolfgang.Scherer@gmx.de

Abstract

A non-functional, matrix-based structural logic is developed, which generalizes logical variables as 2-literal disjunctive clauses and disjunctive clause members as single logical states. Relations between states are generalized to the binary property pair of mutual independence and mutual exclusion. Logical states and their relations are mapped to matrix rows and columns based on an inverted adjacency matrix preserving clauses as sub-matrices.

This state relation matrix is shown to have several profound advantages over resolution based CDCL solvers in regard to deterministic algorithms for the boolean satisfiability problem. Specifically CNF formulas are generalized to a conjunction of disjunctive clauses of conjunctive clauses (CDF) without any restrictions to the contained literals. CDF formulas are bijectively translated to a matrix of sub-matrices preserving clause boundaries. A polynomial time conflict propagation (consolidation) algorithm is presented, which promotes the static state relation matrix to a dynamic data structure. The algorithm is essential to establish certain properties of consolidated state relation matrices, that can neither be derived from functional logic nor from standard graph theory.

Boolean satisfiability is identified as single state reducibility of the sub-matrices of the state relation matrix. Binary decisions over a set of logical variables are shown to be equivalent to single state reductions of a subset of 2 -state sub-matrices.
This overly constrained definition is generalized as 2 -state sub-matrix reducibility by showing that consolidated state relation matrices which have only single state and 2 -state sub-matrices are necessarily contradiction free. This gives rise to a consistent level defintion for k-SAT problems, where the algorithmic differences between 2-SAT and 3-SAT problems are direct consequences of the structural properties of consolidated 2 -state and 3 -state sub-matrices. The upper bound for worst case runtime is identified as $\lceil k / 2\rceil^{m}$ for $k>=0$.

The identification of the core problem as the matrix of k-state sub-matrices where $k>=3$, shows that the orginal logical variables of a CDF formula and their truth table are entirely irrelevant for state relation matrix algorithms.

A method for reencoding CNF formulas is shown which obfuscates the problem structure, making various first level optimizations and XOR clause detection ineffective for CDCL algorithms. A generalized method of advance decisions in the state relation matrix is presented, which is resilient towards such structural obfuscation, since 2-state sub-matrices are eliminated from the core problem.
Various algorithms are developed to manipulate the state relation matrix in a systematic manner to reduce the problem size with emphasis on worst-case polynomial run-time behaviour.

A reference application was developed, implementing a subset of algorithms sufficient to systematically solve all sudokus on $n^{2} \times n^{2}$ grids of $n \times n$ blocks with $n=3$ with strictly polynomial time worst case behavior.

The exponential time 2-state splitting algorithm is shown to reveal graph isomorphism of the partitions for certain classes of UNSAT problems (inherently untractable for variable-based decision algorithms). This isomorphism allows reduction of the problem size resulting in linear worst-case run-time.

By focusing on clauses as input of a logical formula, structural single state mutinex logic provides algorithms and transformations for the actual problem and gives a sound foundation for accurate complexity classifications and structural analysis.
|:todo:| reference to graph isomorphism
https://en.wikipedia.org/wiki/Graph_isomorphism_problem which is not known to be NPcomplete, however the subgraph problem is NP-complete

KEYWORDS: single state, mutually exclusive, mutually independent, variable generalization, satoku matrix, inverted adjacency matrix, structural logic, boolean satisfiability, single selection

Contents

1 Preface 5
2 States, Cells, Matrix 7
2.1 Index Scheme 7
2.2 State Properties 8
2.2.1 Merge Operation 8
2.2.2 Macro States 9
2.2.3 Compound States 10
2.3 Cell Representation 10
2.4 Satoku Matrix 13
3 Basic Deduction Rules 14
3.1 Provability (Minimal Definition) 14
3.2 Assignments 14
3.3 Contradiction Check 15
3.4 Conflict Propagation 15
3.5 Requirement Update 17
3.6 Consolidation 18
4 Summary of Properties 19
5 Mapping CDF Problems 20
5.1 Mapping Propositonal Variables 21
5.2 Mapping Example 21
6 Conflict Sequence Relations 22
6.1 Basic Conflict Subsequence 23
6.2 Special Properties of bound Cell Rows 23
6.3 Hamming Weight 24
7 Satoku Matrix Transformations 24
7.1 Distractors 25
7.2 Advance Decisions 25
7.3 Redundancy Removal 28
7.4 Merging Cells 29
8 Indirect Conflicts 32
8.1 Immediate Indirect Conflicts 32
8.2 Hidden Indirect Conflicts 35
8.3 2-State Cells 36
8.4 Refined Provability 37

Satoku Matrix

9 Advanced Satoku Matrix Transformations 37
9.1 2-State Splitting 37
9.2 Distractor Reduction 39
9.2.1 Special Properties of 2-State Distractors 45
9.3 State Row Variables 46
9.4 OR-NONE Cell Construction 46
10 Gaussian Elimination with 3-Variable XORs 49
11 3-Regular Bipartite Graph Problem Example 52
12 Equivalence Reasoning 54
13 Construction of Desirable Encodings 58
13.1 Substituting Gaussion Elimination for Determining Satisfiability 67
14 Constraint Satisfaction Example 70
14.1 Direct Encoding Without At-Most-One Constraints 70
14.2 Direct Encoding With All Constraints 73
15 Constructing Variable Sets 77
16 Identifying Relevant Problem 78
17 Multi-value Logic Loops 79
18 Schaefer's Dichotomy Theorem 81
19 Partial Distributive Expansion 86
20 Hardness - Propositional Argument 86
20.1 Hardness and Complexity 87
21 The Laws of Logic 89
22 Summary 89
WorkMarks 91
Tables 91
Figures 91
Theorems 92
Equations 92
Algorithms 93
References 94
Appendix A. Mapping a Satoku Matrix to CNF 97
Appendix B. Mapping a graph to a Satoku Matrix for k-independent set problem 101
Appendix C. Maximizing Conflicts 102
Appendix D. Examples 103
D.1. Examples for unassigned variables in provable satoku matrix 103
D.2. Worst case run-time complexities 107
D.3. Examples for Proof of Advance Decisions 108
D.4. Example: conflict detection by advance decision 110
D.5. Example: Stepwise conflict detection 113

1. Preface

Since Aristotle, logic[wiki-logic] has been tampered with in various ways.
The "Law of Excluded Middle" for instance has been discussed at great length,and has lead to many-valued logics[wiki-mvl] and very prominently to constructive logic[wiki-cl]. A not so prominent discussion questions the "Law of Non-Contradiction", e.g. dialethism[sep-dia] or generally paraconsistent logic[sep-para].

Even the deductive rules have been generalized in proof theory[sep-proof] and formalized in sequent calculus[wiki-seq].
The propositional calculus[wiki-prop] has been successfully axiomatized only with propositional variables and operator symbols, without the notion of truth values at all.

A peculiar division of logic into sub-systems happened with mathematical logic[wiki-ml]. The nicely chainable unary and binary operators of logic are used for propositional calculus. The stubbornly unchainable function of choice (single selection) has been handed off to graph theory[wiki-graph]. While mathematical logic is a highly dynamic system, graph theory deals mostly with a static array of vertices and edges.
Most of these logical endeavors hold on to the notion of propositions as atomic objects holding truth values, with the exception of graph theory, where propositional literals are mapped to vertices and their conflict relationships are mapped to edges (see appendix B).

Graph theory comes closest to dealing with the structure of logical formulae. However, the structural elements of propositional logic, namely clauses, are thrown away as (mathematically) not necessary, removing all dynamic from the underlying logical formula.

Figure 1: Logic conversions

It is in the wide gap between propositional logic and graph theory, where structural single state mutinex logic (SSSML) resides. It generalizes literals and mutual exclusion like graph theory, but keeps clauses as primary source of structural conflict information.

It additionally generalizes propositional variables as 2-literal clauses offering a path back into propositional calculus without losing the identity of the original variables, which happens when mapping a CNF formula to a k-independent set problem. The elimination of clauses in this process destroys the structural information to the point that recovery of a suitable set of clauses (edge cover by cliques) presents an NP-Hard problem of its own (see appendix B).
Employing the same representation for variables and clauses allows a deeper insight into algorithmic mechanics, identifying decisions over propositional variables as a special (suboptimal) case of a generalized decision algorithm over groups of alternatives in clauses. It also reveals that decisions
over propositional variables actually solve a secondary problem that is only indirectly connected to the actual conflicts.
In the nether regions of conflict relationships SSSML appears somewhat like NAND - any electrical engineer will agree that it is almost impossible ${ }^{1 .}$ to understand NAND-formulae, but they are still extremely useful for building things.

The current theory of SAT solving is DPLL (Davis-Putnam-Logemann-Loveland) [wiki-dpll] with CDCL (conflict driven clause learning), while practical SAT solving is really TEWHAI (throwing everything we have at it) before doing CDCL.
Most of these algorithms are highly dependent on an appropriate encoding, as is DPLL itself. XORdetection and equivalence reasoning are easily fooled by variations in encoding.

Although unit propagation and resolution can be identified in SSSML, they are merely special cases of more generalized operations in SSSML. Since 2-clauses are effectively eliminated as redundant, SSSML is more resilient to encoding variations.

[^0]
2. States, Cells, Matrix

Structural single state mutinex logic (SSSML) does not have propositions or truth values. It deals exclusively with singular states, which are either atomic states or their conflict relationships (CFR) to other atomic states. An atomic state is simply the special case of a conflict relationship between an atomic state and itself. This makes the distinction between atomic states and conflict relationships mere syntactic sugar to clarify context. Singular states are either impossible or possible (represented by 0 and 1) and are grouped in cells (represented as state matrices). Cells are further arranged in a cell matrix (see figure 2).

2.1 Index Scheme

Except for defining the basic properties of states, singular states outside the context of a matrix are mostly meaningless in SSSML. Therefore, states are always referenced with full matrix indices, which are introduced here before the formal definition of states.

The index scheme for matrix entities is chosen to reference increasingly detailed subsets of the cell matrix (see figure 2). It is 0 -based, since it mainly serves as a template for computer algorithms. Therefore for all indices used in this article $i, j, g, h, e, f, x, y, z, m, n=(0,1, \ldots)$.

A satoku matrix is a cell matrix consisting of cell matrix rows c_{i}, subdivided into cells $c_{i_{g}}$. Due to symmetry of a satoku matrix, cell matrix columns can also be referenced as c_{g}. Cells $c_{i_{g}}$ are matrices of cell rows $r_{i_{j_{g}}}$ and cell columns (not referenced as state entities in this article). Cell rows $r_{i_{j_{g}}}$ consist of singular states $s_{i_{j_{g_{h}}}}$ which are referenced as atomic states, if $i=g \wedge j=h$, and as conflict relationships, if $i \neq g \vee j \neq h$.

s_{0}	100	1111	111	11	c_{0}
$s_{0_{1}}$	010	0111	111	11	
$s_{0_{2}}$	001	1111	101	01	
$s_{1_{0}}$	101	1000	011	11	$c_{1_{2}}$
s_{11}	111	0100	101	01	
s_{12}	111	0010	111	10	
s_{13}	111	0001	110	11	
$s_{2_{0}}$	111	0111	100	11	s_{20}
s_{2}	110	1011	010	11	$s_{2} 1_{0}$
s_{2}	111	1110	001	11	$s_{2_{2} 1_{3}}$
$s_{3}{ }_{0}$	110	1011	111	10	
s_{3}	111	1101	111	01	$r_{31_{2}}$

Figure 2: Basic satoku matrix and extent of indexing

Table 1 shows the index scheme used in this article.

indexed state entity	description
c cell-matrix-row	row c_{i} of cells (cell-matrix-row)
c cell-matrix-row cell-matrix-column	single cell $c_{i_{g}}$
$r_{\text {cell-matrix-row }}$ cell-row cell-matrix-column	cell row $r_{i_{j_{g}}}$ containing all CFR states between an atomic state $s_{i_{j_{i_{j}}}}$ and an atomic cell $c_{g_{g}}$
s cell-matrix-row cell-row	state row $s_{i_{j}}$ of all cell rows $r_{i_{j_{g}}}$ containing all singular states for an atomic state $s_{i_{i_{i_{j}}}}$
S cell-matrix-row cell-row cell-matrix-column cell-column	singular state $s_{i_{j_{g_{h}}}}$

Table 1: Index scheme

2.2 State Properties

A singular state $s_{i_{j_{g_{h}}}}$ is either possible (Pos), denoted as 1, or impossible (Imp), denoted as 0:

$$
\begin{equation*}
\forall s_{i_{j_{g_{h}}}}: \operatorname{Pos}\left(s_{i_{i_{g_{h}}}}\right) \underline{\operatorname{Imp}}\left(s_{i_{j_{g_{h}}}}\right) \tag{1}
\end{equation*}
$$

Two atomic states $s_{i_{j_{i_{j}}}}, s_{g_{h_{g_{h}}}}$ can be either independent (Ind) or mutually exclusive (Mutex, \uparrow):

$$
\begin{equation*}
\forall s_{i_{i_{i_{j}}}}, \forall s_{g_{h_{g_{h}}}}: \operatorname{Ind}\left(s_{i_{i_{i_{j}}}}, s_{g_{h_{g_{h}}}}\right) \underline{\vee} \operatorname{Mutex}\left(s_{i_{j_{i_{j}}}}, s_{g_{h_{g_{h}}}}\right) \tag{2}
\end{equation*}
$$

Independence and mutual exclusion are commutative. If state $s_{i_{j_{i_{j}}}}$ is independent of/mutually exclusive with state $s_{g_{h_{g_{h}}}}$, it follows that state $s_{g_{h_{g_{h}}}}$ is independent of/mutually exclusive with state $s_{i_{j_{j}}}$:

$$
\begin{align*}
\operatorname{Ind}\left(s_{i_{i_{i_{j}}}}, s_{g_{h_{g_{h}}}}\right) & \Leftrightarrow \quad \operatorname{Ind}\left(s_{g_{h_{g_{h}}}}, s_{i_{j_{i_{j}}}}\right) \\
\operatorname{Mutex}\left(s_{i_{j_{j}}}, s_{g_{h_{g_{h}}}}\right) & \Leftrightarrow \operatorname{Mutex}\left(s_{g_{h_{g_{h}}}}, s_{i_{j_{i_{j}}}}\right) \tag{3}\\
s_{i_{j_{i_{j}}}} \uparrow s_{g_{h_{g_{h}}}} & \Leftrightarrow s_{g_{h_{g_{h}}}} \uparrow s_{i_{j_{i_{j}}}}
\end{align*}
$$

The conflict relationship $s_{i_{j_{h}}}$, between two atomic states $s_{i_{i_{i_{j}}}}, s_{g_{h_{g_{h}}}}$ is possible, if the atomic states are independent. If the atomic states are mutually exclusive, the CFR is impossible:

$$
\begin{array}{rll}
\operatorname{Ind}\left(s_{i_{j_{i_{j}}}}, s_{g_{h_{g_{h}}}}\right) & \Leftrightarrow & \operatorname{Pos}\left(s_{i_{j_{g_{k}}}}\right) \\
\operatorname{Mutex}\left(s_{i_{j_{j_{j}}}}, s_{g_{h_{g_{h}}}}\right) & \Leftrightarrow & \operatorname{Imp}\left(s_{i_{j_{g_{h}}}}\right) \tag{4}
\end{array}
$$

Due to commutativity of Ind and Mutex (3), the same holds for the mirror CFR $s_{g_{h_{i_{j}}}}$:

$$
\left.\begin{array}{rl}
\operatorname{Ind}\left(s_{i_{j_{i_{j}}}}, s_{g_{h_{g_{g}}}}\right) & \leftrightarrow \operatorname{Ind}\left(s_{g_{h_{g_{h}}}}, s_{i_{i_{j_{j}}}}\right) \tag{5}
\end{array}\right) \quad \Leftrightarrow \operatorname{Pos}\left(s_{i_{j_{g_{h}}}}\right) \leftrightarrow \operatorname{Pos}\left(s_{g_{h_{i_{j}}}}\right)
$$

2.2.1 Merge Operation

When two singular states $s_{i_{j_{g_{h}}}}, s_{f_{g_{g_{h}}}}$ are merged into another singular state $s_{x_{y_{g_{h}}}}$:

$$
s_{x_{y_{g_{h}}}}=\operatorname{Mrg}\left(s_{i_{j_{g_{h}}}}, s_{e_{f_{g_{h}}}}\right),
$$

the resulting properties of state $s_{x_{y_{g_{h}}}}$ are defined by the state table 2 .

$s_{i_{g_{h}}}$	$s_{e_{f_{g_{h}}}}$	$s_{x_{y_{g_{h}}}}$
Imp	Imp	Imp
Imp	Pos	Imp
Pos	Imp	Imp
Pos	Pos	Pos

Table 2: State table for merging two states $s_{i_{g_{g_{h}}}}, s_{e_{f_{g_{h}}}}$

It is obvious, that impossible is the dominant state.
The merge operation for singular states is equivalent to the function AND in propositional logic: $s_{i_{j_{g_{h}}}} \wedge s_{e_{f_{g_{h}}}}=s_{x_{y_{g_{h}}}}$. However, since the merge operation never just affects a singular state $s_{x_{y_{g_{h}}}}$, but also always the mirror state $s_{g_{h_{x_{y}}}}$, and is generally not context free or functional, the AND function is avoided to minimize confusion.

2.2.2 Macro States

A macro state M is a group of singular states containing none or many singular states $s_{i_{j_{g_{h}}}}$. The properties possible and impossible are extended to macro states. A macro state is possible, if at least one of the contained singular states is possible. A macro state is impossible, if none of the contained singular states is possible (possible bias)

$$
\begin{array}{ll}
M=\left\{s_{i_{j_{g_{h}}}}\right\}, & \\
|M|=0 & \Rightarrow \operatorname{Imp}(M), \\
\exists s_{i_{g_{h}}}: s_{i_{j_{g_{h}}}} \in M \wedge \operatorname{Pos}\left(s_{i_{j_{g_{h}}}}\right) & \Leftrightarrow \operatorname{Pos}(M), \tag{6}\\
\forall s_{i_{g_{h}}}: s_{i_{j_{h}}} \in M \wedge \operatorname{Imp}\left(s_{i_{j_{g_{h}}}}\right) & \Rightarrow \operatorname{Imp}(M) .
\end{array}
$$

A macro state can further be either decided (Dec) or undecided (Und). A macro state is decided, if it has at most one possible singular state. A macro state is undecided, if it has more than one possible singular state. (undecided bias)

$$
\begin{align*}
& P_{m}=\left\{s_{i_{j_{g_{h}}}} \mid s_{i_{j_{g_{h}}}} \in M \wedge \operatorname{Pos}\left(s_{i_{j_{g_{h}}}}\right)\right\}, \\
& \left|P_{m}\right| \leq 1 \Leftrightarrow \quad \Leftrightarrow \quad \operatorname{Dec}(M), \tag{7}\\
& \left|P_{m}\right|>1 \Leftrightarrow \quad \Leftrightarrow \quad \operatorname{Und}(M) .
\end{align*}
$$

A macro state is bound, if it is decided and possible

$$
\begin{equation*}
\operatorname{Pos}(M) \wedge \operatorname{Dec}(M) \wedge s_{i_{j_{g_{h}}}} \in P_{m} \Leftrightarrow \operatorname{Bnd}\left(M, s_{i_{j_{g_{h}}}}\right), \tag{8}
\end{equation*}
$$

Another macro state classification is restricted (Rst) and unrestricted (Unr). A macro state is restricted, if it contains at least one impossible singular state or no state at all. A macro state is unrestricted, if it is possible and does not contain any impossible singular states, i.e. it consists entirely of possible singular states. (restricted bias)

$$
\begin{align*}
& I_{m}=\left\{s_{i_{j_{g_{h}}}} \mid s_{i_{j_{g_{h}}}} \in M \wedge \operatorname{Imp}\left(s_{i_{j_{g_{h}}}}\right)\right\}, \\
& \operatorname{Imp}(M) \vee\left|I_{m}\right|>0 \quad \Leftrightarrow \quad \operatorname{Rst}(M) \tag{9}\\
& \operatorname{Pos}(M) \wedge\left|I_{m}\right|=0 \quad \Leftrightarrow \quad \operatorname{Unr}(M)
\end{align*}
$$

2.2.3 Compound States

A compound state C is a group of macro states M_{f} that can contain more than one macro state.

The properties possible and impossible are extended to compound states. A compound state is possible, if all of the contained macro states are possible. A compound state is impossible, if one of the contained macro states is impossible. (impossible bias)

$$
\begin{align*}
& C=\left\{M_{f}\right\}, \\
& |C|=0 \\
& \forall M_{f}: M_{f} \in C \wedge \operatorname{Pos}\left(M_{f}\right) \tag{10}\\
& \exists M_{f}: M_{f} \in C \wedge \operatorname{Imp}(C), \operatorname{Imp}_{f}(C), \\
&
\end{align*} \quad \Rightarrow \operatorname{Imp}(C) . .
$$

A compound state can further be either decided or undecided. A compound state is decided, if all contained macro states, are decided. A compound state is undecided, if it has at least one undecided macro state. (undecided bias)

$$
\begin{align*}
& U_{c}=\left\{M_{f} \mid M_{f} \in C \wedge \operatorname{Und}\left(M_{f}\right)\right\}, \\
& \left|U_{c}\right|=0 \Leftrightarrow \operatorname{Dec}(C), \tag{11}\\
& \left|U_{c}\right|>0 \Leftrightarrow \quad \operatorname{Und}(C) .
\end{align*}
$$

A compound state is bound, if the state is possible and all contained macro states, are bound

$$
\begin{equation*}
\forall M_{f}: \operatorname{Pos}(C) \wedge M_{f} \in C \wedge \operatorname{Bnd}\left(M_{f}, m_{f_{g}}\right) \Leftrightarrow \operatorname{Bnd}\left(C, m_{f_{g}}, \ldots\right) . \tag{12}
\end{equation*}
$$

Another compound state classification is restricted and unrestricted. A compound state is restricted, if it contains at least one restricted macro state, that is undecided. A compound state is unrestricted, if all contained undecided macro states are unrestricted. (restricted bias).

$$
\begin{align*}
& R_{c}=\left\{M_{f} \mid M_{f} \in C \wedge s_{i_{g_{g}}} \in M_{f} \wedge(i \neq g \vee j \neq h) \wedge \operatorname{Rst}\left(M_{f}\right)\right\}, \\
& |C|=0 \Rightarrow \operatorname{Rst}(C), \tag{13}\\
& \left|R_{c}\right|>0 \Rightarrow \operatorname{Rst}(C), \\
& \left|R_{c}\right|=0 \Leftrightarrow \operatorname{Unr}(C) .
\end{align*}
$$

2.3 Cell Representation

Atomic states and their conflict relationships are grouped in atomic cells $c_{i_{i}}$ where the positions on the diagonal represent the atomic states $s_{i_{j_{i_{j}}}}$ and other positions $s_{i_{i_{i_{h}}}}, j \neq h$ represent the conflict relationships between the atomic states $s_{i_{i_{j}}}$ and $s_{i_{h_{i_{h}}}}$ intersecting at that position. In this article, only atomic cells with mutually exclusive atomic states are considered (see figure 3):

$$
\begin{align*}
& \forall c_{i_{i}} \forall s_{i_{j_{i_{j}}}}: c_{i_{i}}=\left\{s_{i_{i_{i_{j}}}}\right\} \rightarrow \operatorname{Pos}\left(s_{i_{j_{j_{j}}}}\right) \tag{14}\\
& \forall c_{i_{i}} \forall s_{i_{j_{i_{h}}}}: c_{i_{i}}=\left\{s_{i_{j_{i_{h}}}}\right\} \wedge j \neq h \rightarrow \operatorname{Imp}\left(s_{i_{i_{i_{h}}}}\right)
\end{align*}
$$

$s_{0_{0}}$	1	0	0				$r_{0_{0_{0}}}$
$s_{0_{1}}$	0	1	0				$r_{0_{1}}$
$s_{0_{2}}$	0	0	1			$r_{0_{2_{0}}}$	
$s_{1_{0}}$			1	0	0	$r_{1_{0_{1}}}$	
$s_{1_{1}}$			0	1	0	$r_{1_{1_{1}}}$	
$s_{1_{2}}$			0	0	1	$r_{1_{2_{1}}}$	

Figure 3: Atomic cells $c_{i_{i}}$ with mutually exclusive atomic states $s_{i_{j_{i}}}$,

$$
i=(0,1), j=(0,1,2)
$$

Conflict relation cells $c_{i_{g}}, g \neq i$ only contain conflict relationships between atomic states $s_{i_{j_{i_{j}}}}$ and atomic states $s_{g_{h_{g_{h}}}}$ (see figure 4):

$$
\begin{align*}
\forall c_{i_{g}} \forall s_{i_{j_{g_{h}}}}: c_{i_{g}}=\left\{s_{i_{j_{g_{h}}}} \mid \quad\right. & \operatorname{Ind}\left(s_{i_{j_{i_{j}}}}, s_{g_{h_{g_{h}}}}\right) \rightarrow \operatorname{Pos}\left(s_{i_{j_{g_{h}}}}\right) \\
& \left.\operatorname{Mutex}\left(s_{i_{j_{i_{j}}}}, s_{g_{h_{g_{h}}}}\right) \rightarrow \operatorname{Imp}\left(s_{i_{j_{g_{h}}}}\right)\right\}, i \neq g \tag{15}
\end{align*}
$$

$s_{0_{0}}$			1	1	1	$r_{0_{0_{1}}}$
$s_{0_{1}}$			1	1	1	$r_{0_{1}}$
$s_{0_{2}}$			1	1	0	$r_{0_{2_{1}}}$
$s_{1_{0}}$	1	1	1			$r_{1_{0_{0}}}$
$s_{1_{1}}$	1	1	1			$r_{1_{1_{0}}}$
$s_{1_{2}}$	1	1	0			$r_{1_{2_{0}}}$

Figure 4: CFR cells $c_{0_{1}}, c_{1_{0}}$ with impossible CFR states $s_{0_{2_{1_{2}}}}, s_{1_{2_{0_{2}}}}$ for mutually exclusive atomic states $s_{0_{0_{0}}}$ and $s_{1_{1_{1}}}$

Due to commutativity of mutual exclusion (3), each conflict relationship $s_{i_{j_{g_{h}}}}, i \neq g \vee j \neq h$, is necessarily equivalent to its diagonal mirror state $s_{g_{h_{i_{j}}}}$.

Since conflict relationships are intrinsic properties of atomic states, the general term "state" $s_{i_{j_{g}}}$ is used to reference cell row $r_{i_{j_{g}}}$.
If $i=g$, this includes the atomic state $s_{i_{j_{j}}}$ and its conflict relationships $s_{i_{j_{i_{h}}}}$ to the other atomic states $s_{i_{h_{i_{h}}}}, h \neq j$:

$$
\begin{equation*}
\forall s_{i_{j_{i}}} \forall r_{i_{j_{i}}} \forall s_{i_{j_{i_{h}}}}: s_{i_{j_{i}}}=r_{i_{j_{i}}}=\left\{s_{i_{j_{i_{h}}}} \mid j \neq h \rightarrow \operatorname{Imp}\left(s_{i_{j_{i_{h}}}}\right)\right\} \tag{16}
\end{equation*}
$$

If $i \neq g$, the cell row $r_{i_{j_{g}}}$ contains the conflict relationships $s_{i_{j_{g_{h}}}}$ between atomic state $s_{i_{j_{i_{j}}}}$ and the atomic states $s_{g_{h_{g_{h}}}}$:

$$
\begin{align*}
& \forall s_{i_{j_{g}}} \forall r_{i_{j_{g}}} \forall s_{i_{j_{g_{h}}}}: \\
& s_{i_{j_{g}}}=r_{i_{j_{g}}}=\left\{s_{i_{j_{g_{h}}}} \left\lvert\, \quad \begin{array}{l}
\operatorname{Ind}\left(s_{i_{j_{i_{j}}}}, s_{g_{h_{g_{h}}}}\right) \rightarrow \operatorname{Pos}\left(s_{i_{j_{g_{h}}}}\right), \\
\\
\left.\quad \operatorname{Mutex}\left(s_{i_{j_{i_{j}}}}, s_{g_{h_{g_{h}}}}\right) \rightarrow \operatorname{Imp}\left(s_{i_{j_{g_{h}}}}\right)\right\}, i \neq g
\end{array}\right., \begin{array}{ll}
\end{array}\right) . \tag{17}
\end{align*}
$$

Cell rows $r_{i_{j_{g}}}$ are macro states.

A possible decided cell row is called bound (Bnd):
bound

A possible state $s_{i_{j_{g_{h}}}}$ in a bound cell row $r_{i_{j_{g}}}$ is called required (Req):

$$
\begin{equation*}
\exists s_{i_{j_{g_{h}}}}: \operatorname{Pos}\left(s_{i_{j_{g_{h}}}}\right) \wedge \operatorname{Bnd}\left(r_{i_{j_{g}}}\right) \Leftrightarrow \operatorname{Req}\left(s_{i_{j_{g_{h}}}}\right) . \tag{19}
\end{equation*}
$$

Note that required is not a commutative state property, since the mirror state of a cell row is a cell column.

When a cell row $r_{i_{j_{g}}}$ is decided and has no possible states $s_{i_{j_{g_{h}}}}$ and is therefore impossible, it is called a conflict cell row (CfI), short notation $\neg r_{i_{j_{g}}}$:

$$
\begin{equation*}
\forall s_{i_{j_{g_{h}}}}: s_{i_{j_{g_{h}}}} \in r_{i_{j_{g}}} \wedge \operatorname{Imp}\left(s_{i_{j_{g_{h}}}}\right) \rightarrow \operatorname{Imp}\left(r_{i_{j_{g}}}\right) \Leftrightarrow \operatorname{Cfl}\left(r_{i_{j_{g}}}\right) \Leftrightarrow \neg r_{i_{j_{g}}} \tag{20}
\end{equation*}
$$

Two cell rows $r_{i_{j_{g}}}, r_{e_{f_{g}}}$ are combinable (Cmb), if their atomic states $s_{i_{j_{i_{j}}}}, s_{e_{f_{e_{f}}}}$ are independent:

$$
\begin{equation*}
\operatorname{Ind}\left(s_{i_{j_{i_{j}}}}, s_{e_{f_{e_{f}}}}\right) \rightarrow \operatorname{Pos}\left(s_{i_{j_{e_{f}}}}\right) \wedge \operatorname{Pos}\left(s_{e_{f_{i_{j}}}}\right) \Leftrightarrow \operatorname{Cmb}\left(r_{i_{j_{g}}}, r_{e_{f_{g}}}\right) \tag{21}
\end{equation*}
$$

Cells $c_{i_{g}}$ are both macro and compound states. They are defined as hybrid states containing cell rows $r_{i_{j_{g}}}$. If the macro state properties of cells are referenced, the cells are denoted as macro state cells $c_{m_{i g}}$.
The properties possible and impossible are extended to cells. A cell $c_{i_{g}}$ is possible, if at least one of the contained cell rows $r_{i_{g_{j}}}$ is possible. A cell $c_{i_{g}}$ is impossible, if all of the contained cell rows $r_{i_{g_{j}}}$ are impossible. (possible bias):

$$
\begin{array}{ll}
H=c_{i_{g}}=\left\{r_{i_{g_{j}}}\right\} & \Rightarrow \\
|H|=0 & \operatorname{Imp}(H) \\
\exists r_{i_{g_{j}}}: r_{i_{g_{j}}} \in H \wedge \operatorname{Pos}\left(r_{i_{g_{j}}}\right) & \Leftrightarrow \tag{22}\\
\forall r_{i_{g_{j}}}: r_{i_{g_{j}}} \in H \wedge \operatorname{Pos}(H) \\
\hline \operatorname{Imp}\left(r_{i_{g_{j}}}\right) & \Rightarrow \operatorname{Imp}(H)
\end{array}
$$

A cell $c_{i_{g}}$ can further be either decided or undecided. A cell $c_{i_{g}}$ is decided, if all contained cell rows $r_{i_{g_{j}}}$, are decided. A cell $c_{i_{g}}$ is undecided, if it has at least one undecided cell row $r_{i_{g_{j}}}$. (undecided bias):

$$
\begin{align*}
& U_{h}=\left\{r_{i_{g_{j}}} \mid r_{i_{g_{j}}} \in H \wedge \operatorname{Und}\left(r_{i_{g_{j}}}\right)\right\} \\
& \left|U_{h}\right|=0 \quad \Leftrightarrow \quad \operatorname{Dec}(H) \tag{23}\\
& \left|U_{h}\right|>0 \quad \Leftrightarrow \quad \operatorname{Und}(H)
\end{align*}
$$

A cell $c_{i_{g}}$ is restricted, if it contains at least one restricted cell row $r_{i_{g_{j}}}$. A cell $c_{i_{g}}$ is unrestricted, if all contained cell rows $r_{i_{g_{j}}}$ are unrestricted. (restricted bias):

$$
\begin{align*}
& R_{h}=\left\{r_{i_{g_{j}}} \mid r_{i_{g_{j}}} \in H \wedge \operatorname{Rst}\left(r_{i_{g_{j}}}\right)\right\} \\
& |H|=0 \Rightarrow \operatorname{Rst}(H) \\
& \left|R_{h}\right|>0 \Rightarrow \tag{24}\\
& \left|R_{h}\right|=0 \quad \Leftrightarrow \quad \operatorname{Rst}(H) \\
& \operatorname{Unr}(H)
\end{align*}
$$

When a cell is decided and has no possible cell rows and is therefore impossible, it is called a contradiction (Ctr):

$$
\begin{equation*}
\operatorname{Imp}\left(c_{i_{g}}\right) \Leftrightarrow \operatorname{Ctr}\left(c_{i_{g}}\right) \tag{25}
\end{equation*}
$$

2.4 Satoku Matrix

A satoku matrix \mathbb{S} is a compound state containing cells $c_{i_{g}}$.
Here is a short summary of properties.
Cells $c_{i_{g}}$ are generally defined as hybrid states consisting of cell rows $r_{i_{j_{g}}}$
The cells $c_{i_{i}}$ on the diagonal of the satoku matrix \mathbb{S} contain atomic states $s_{i_{j_{i_{j}}}}$.
Macro state cells $c_{m_{i_{g}}}$ contain singular states $s_{i_{j_{g_{h}}}}$, which are either

- atomic states $s_{i_{j_{i_{j}}}}$ and their impossible conflict relationships $s_{i_{j_{i_{h}}}}, j \neq h$, or
- the conflict relationships between atomic states $s_{i_{j_{i_{j}}}}$ and atomic states $s_{g_{h_{g_{h}}}}$ if $i \neq g, j \neq h$.

A cell row $r_{i_{j_{g}}}, g \neq i$, of a conflict relationship cell $c_{i_{g}}$ represents the conflict relationships between the atomic state $s_{i_{j_{j}}}$ and all atomic states $s_{g_{h_{g_{h}}}}$ of atomic cell $c_{g_{g}}$.
A state row $s_{i_{j}}$ is a compound state, referencing the entire sequence of corresponding cell rows $r_{i_{j_{g}}}$ and contains all intra-cell and inter-cell conflict relationships for atomic state $s_{i_{j_{i_{j}}}}$:

$$
\begin{equation*}
s_{i_{j}}=\left\{r_{i_{j_{g}}}\right\} \tag{26}
\end{equation*}
$$

When a state row $s_{i_{j}}$ has a conflict cell row $r_{i_{j g}}$ and is therefore impossible, it is called a conflict confict state row (Cf), short notation $\neg s_{i_{j}}$:

$$
\begin{equation*}
\mathrm{Cfl}\left(r_{i_{j_{g}}}\right) \rightarrow \operatorname{Imp}\left(s_{i_{j}}\right) \Leftrightarrow \operatorname{Cfl}\left(s_{i_{j}}\right) \Leftrightarrow \neg s_{i_{j}} \tag{27}
\end{equation*}
$$

Two state rows $s_{i_{j}}, s_{e_{f}}$ are combinable (Cmb), if their atomic states $s_{i_{j_{i_{j}}}}, s_{e_{f_{e_{f}}}}$ are independent:

$$
\begin{equation*}
\operatorname{Ind}\left(s_{i_{j_{i_{j}}}}, s_{e_{f_{e_{f}}}}\right) \Leftrightarrow \operatorname{Cmb}\left(s_{i_{j}}, s_{e_{f}}\right) \tag{28}
\end{equation*}
$$

An impossible satoku matrix \mathbb{S} is called a contradiction:

$$
\begin{equation*}
\operatorname{Imp}\left(c_{i_{g}}\right) \rightarrow \operatorname{Imp}(\mathbb{S}) \Leftrightarrow \operatorname{Ctr}(\mathbb{S}) \tag{29}
\end{equation*}
$$

It is advantageous for human readers, to represent possible singular states $s_{i_{j_{g_{h}}}}$ of undecided cell rows $r_{i_{j_{g}}}$ with a dash "-" contrasting the required " 1 " for a possible singular state $s_{i_{j_{g_{h}}}}$ of a decided cell row $r_{i_{j g}}$. Just keep in mind, that it is no new third state indicating ternary logic. The satoku matrix \mathbb{S} from figure 2 then presents as shown in figure 5 .

$\begin{aligned} & s_{0_{0}} \\ & s_{0_{1}} \\ & s_{0_{2}} \end{aligned}$	$\begin{array}{lll} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$0---$	$\begin{aligned} & --- \\ & --- \\ & -0- \end{aligned}$	$\begin{aligned} & \hline-- \\ & -- \\ & 01 \end{aligned}$	c_{0}
$\begin{aligned} & s_{1_{0}} \\ & s_{1} \\ & s_{1_{2}} \\ & s_{1_{3}} \end{aligned}$	$\begin{aligned} & -0- \\ & --- \\ & -- \end{aligned}$	$1 \circ \circ \circ$ $\circ 1 \circ \circ$ ○○ $1 \circ$ $\circ \circ \circ 1$	$\begin{aligned} & 0-- \\ & -0- \\ & --- \\ & --0 \end{aligned}$	$\begin{aligned} & -- \\ & 01 \\ & 10 \\ & -- \end{aligned}$	c_{12}
$\begin{aligned} & s_{2_{0}} \\ & s_{2_{1}} \\ & s_{2} \end{aligned}$	---	$\begin{aligned} & 0--- \\ & -0-- \\ & ---0 \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & -- \\ & -- \end{aligned}$	$\begin{aligned} & s_{2_{0}} \\ & s_{2_{1}} \\ & s_{2_{2} 1_{3}} \end{aligned}$
$\begin{aligned} & s_{3_{0}} \\ & s_{3_{1}} \end{aligned}$	--0	$\begin{aligned} & -0-- \\ & --0- \end{aligned}$	---	$\begin{aligned} & 1 \circ \\ & \circ 1 \end{aligned}$	$r_{31_{2}}$

Figure 5: Visually enhanced satoku matrix

The satoku matrix \mathbb{S} without the cell constraints is always equivalent to an inverted adjacency matrix[wiki-am]. It can therefore be mapped to a graph or propositional formula at any time, if desired.

3. Basic Deduction Rules

Structural logic has a set of basic deduction rules for transforming a satoku matrix \mathbb{S} into a satoku matrix \mathbb{S}^{\prime} preserving provability.

3.1 Provability (Minimal Definition)

A satoku matrix \mathbb{S} is provable (Prov), if it can be reduced via deduction rules to a state row $s_{i_{j}}$, which is decided and possible:

$$
\begin{equation*}
\exists s_{i_{j}} \forall s_{i_{f}}: f \neq j \wedge \operatorname{Pos}\left(s_{i_{j}}\right) \wedge \operatorname{Dec}\left(s_{i_{j}}\right) \wedge \operatorname{Imp}\left(s_{i_{f}}\right) \Leftrightarrow \operatorname{Prov}(\mathbb{S}) \tag{30}
\end{equation*}
$$

It follows that exactly one atomic state $s_{i_{j_{j}}}$ from each cell $c_{m_{i_{i}}}$ of satoku matrix \mathbb{S} must be possible:

$$
\begin{equation*}
\forall M_{i}: M_{i}=\left\{s_{i_{j_{i_{j}}}} \mid c_{m_{i_{i}}} \in \mathbb{S} \wedge s_{i_{j_{i_{j}}}} \in c_{m_{i_{i}}} \wedge \operatorname{Pos}\left(s_{i_{j_{i_{j}}}}\right)\right\} \wedge\left|M_{i}\right|=1 \Leftrightarrow \operatorname{Prov}(\mathbb{S}) \tag{31}
\end{equation*}
$$

This strict core definition of provability is as close to boolean satisfiability as structural single state mutinex logic gets. Note, however, that a possible decided state row $s_{i_{j}}$ does not imply, that all boolean variables of an underlying CDF formula (conjunction of disjunctive clauses of conjunctive clauses) are necessarily decided in such a case (see appendix D. 1 for some examples).

3.2 Assignments

Algorithms use two variations of assignments, value assignment $(:=)$ and state assignment (\leftarrow).
Value assignment $(:=)$ of value val $\in((0, I m p$, impossible $),(1$, Pos, possible $))$ to a variable or singular state $s_{i_{j_{h}}}$ is imperative:

$$
\left(s_{i_{j_{g_{h}}}}:=\mathrm{val}\right) \Rightarrow\left(s_{i_{j_{g_{h}}}}=\mathrm{val}\right)
$$

State assignment (\leftarrow) of value val to a singular state $s_{i_{j_{h}}}$ uses the merge operation (Mrg) as defined in table 2 to determine the effective value for a value assignment. Due to commutativity of independence (Ind) and mutual exclusion (Mutex) (3), the mirror state $s_{g_{h_{i_{j}}}}$ is always adjusted accordingly. Making a state assignment of a value val to a singular state $s_{i_{j_{g_{h}}}}$ is therefore a shortcut for making a value assignment of $\operatorname{Mrg}\left(s_{i_{j_{g_{h}}}}\right.$, val) to $s_{i_{j_{g_{h}}}}$ and a value assignment of $\operatorname{Mrg}\left(s_{g_{h_{i_{j}}}}\right.$, val $)$ to $s_{g_{h_{i}}}$:

$$
\left(s_{i_{j_{g_{h}}}}:=\operatorname{Mrg}\left(s_{i_{j_{g_{h}}}}, \text { val }\right)\right) \wedge\left(s_{g_{h_{i_{j}}}}:=\operatorname{Mrg}\left(s_{g_{h_{i_{j}}}}, \text { val }\right)\right) \quad \Leftrightarrow \quad s_{i_{j_{g_{h}}}} \leftarrow \operatorname{val}
$$

Value assignment is used for variables and otherwise almost exclusively in the context of state assignments and must not be construed to allow for arbitrary assignments of state values.

An immediate consequence is, that singular states $s_{i_{g_{h}}}$ are never "resurrected". Once a singular state $s_{i_{j_{g}}}$ becomes impossible, there is no provision that it becomes possible again:

$$
\forall s_{i_{j_{g_{h}}}} \nexists \mathrm{Op}: \operatorname{Imp}\left(s_{i_{j_{g_{h}}}}\right) \wedge \operatorname{Pos}\left(\operatorname{Op}\left(s_{i_{j_{g_{h}}}}, \ldots\right)\right)
$$

Therefore, a state assignment of property possible (Pos) to a singular state $s_{i_{j_{g_{h}}}}$ is essentially a no-op, i.e., no changes to the states $s_{i_{j_{g_{h}}}}, s_{g_{h_{i j}}}$ are made:

$$
s_{i_{j_{g_{h}}}}^{\prime}=s_{i_{j_{g_{h}}}} \leftarrow \mathrm{Pos} \Rightarrow s_{i_{j_{g_{h}}}}^{\prime}=s_{i_{j_{g_{h}}}}
$$

Backtracking can still be implemented by keeping a copy of the satoku matrix.

3.3 Contradiction Check

All deduction rules terminate, when a satoku matrix \mathbb{S} becomes a contradiction. This happens, when a cell $c_{i_{g}}$ becomes a contradiction, which in turn happens, when all cell rows $r_{i_{j_{g}}}$ of cell $c_{i_{g}}$ become impossible. In algorithm 1, the property Ctr is implemented as an attribute of the respective data structure.

```
Algorithm 1 (contradiction check of cell \(c_{i_{g}}\) ).
if \(\neg \operatorname{Ctr}(\mathbb{S})\) :
    cell_status \(:=\) Imp
    for each cell row \(r_{i_{j g}}\) in cell \(c_{i_{g}}\) :
        if \(\operatorname{Pos}\left(r_{i_{j_{g}}}\right)\) :
            cell_status \(:=\) Pos
            break
    if \(\operatorname{Imp}(\) cell_status \():\)
        \(\operatorname{Imp}\left(c_{i_{g}}\right) \Rightarrow c_{i_{g}}:=\operatorname{Ctr} \Rightarrow \operatorname{Imp}(\mathbb{S}) \Rightarrow \mathbb{S}:=\mathrm{Ctr}\)
if \(\operatorname{Ctr}(\mathbb{S})\) :
    terminate
```


3.4 Conflict Propagation

When an atomic state $s_{i_{j_{j}}}$ becomes impossible, it becomes mutually exclusive to all other atomic states, therefore all of its CFR states $s_{i_{j_{g_{h}}}}$ become impossible and are updated accordingly.

Algorithm 2 (set atomic state $s_{i_{j_{j}}}$ impossible and propagate).
for each singular state $s_{i_{j_{g_{h}}}}$ in state row $s_{i_{j}}$:
$s_{i_{j_{g_{h}}}} \leftarrow \operatorname{Imp}$
perform algorithm 1 (contradiction check of cell $c_{i_{i}}$)
When all CFR states $r_{i_{j_{g}}}$ between the atomic state $s_{i_{j_{i_{j}}}}$ and a cell $c_{g_{g}}$ become impossible, the atomic state $s_{i_{j_{i_{j}}}}$ becomes impossible, since the condition for provability, that exactly one atomic state in each cell must be possible, can no longer be fulfilled for cell $c_{g_{g}}$, if $r_{i_{j_{i}}}$ becomes the only possible state of cell $c_{i_{i}}$.

Algorithm 3 (check for impossible cell row $r_{i_{j_{g}}}$ and propagate). if $\operatorname{Imp}\left(r_{i_{j_{g}}}\right)$:
perform algorithm 2 (set atomic state $s_{i_{j_{i_{j}}}}$ impossible and propagate)

Since this results in a global change, it is useful to add an informational status line reflecting global states of the satoku matrix \mathbb{S}. This status line is labelled P.
In the example of figure 6 a, state row $s_{0_{1}}$ was made impossible and the CFR states have been updated accordingly. It is obvious, that the respective row and column can be removed from the satoku matrix \mathbb{S} since the impossible state is no longer relevant to the provability of \mathbb{S}.

Note that cell rows $r_{2_{1_{0}}}$ and $r_{3_{0_{0}}}$ have become decided and states $s_{2_{1_{0}}}$ and $s_{3_{0_{0_{0}}}}$ have become required.

P	- 0 -			
$s_{0_{0}}$	$1 \circ \circ$			
$s_{0_{1}}$	$\bigcirc \circ \circ$	0000	000	00
$s_{0_{2}}$	$\bigcirc \circ 1$		-0-	01
s_{10}	-0	1		
s_{11}	-0-	$\bigcirc 1 \circ \circ$	- 0-	01
s_{12}	-0-	$\bigcirc \circ 1 \circ$	---	10
s_{13}	$-0-$	$\bigcirc \circ \circ 1$	--0	
	-0-	0	$1 \circ \circ$	
s_{21}	100	-0--	-1 0	--
s_{2}	-0-	$---0$	$\bigcirc \circ 1$	
	100	- 0		$1 \circ$
s_{31}	-0-	--0-		-

(a) Impossible state $s_{0_{1}}$

P	001	- - - -	-0	- -
s_{0}	$\bigcirc 00$	0000	000	00
s_{0}	$\bigcirc \circ \circ$	0000	000	00
$s_{0_{2}}$	$\bigcirc \circ 1$	- - - -	-0-	01
s_{10}	001	$1 \circ \circ$	001	- -
s_{1}	001	$\bigcirc 1 \circ \circ$	- 0-	01
s_{12}	001	$\bigcirc \circ 1 \circ$	-0-	10
s_{13}	001	$\bigcirc \circ \circ 1$	100	- -
s_{20}	001	$0---$	$1 \circ \circ$	- -
s_{21}	000	0000	$\bigcirc \circ \circ$	00
$s_{2}{ }_{2}$	001	---0	$\bigcirc \circ 1$	
s_{3}	000	-0--	-0-	$1 \circ$
$s_{3}{ }_{1}$	001	- - $0-$	- $0-$	$\bigcirc 1$

(b) Decided macro state cell $c_{m_{0_{0}}}$

Figure 6: conflict propagation

When a macro state cell $c_{m_{i_{i}}}$ becomes decided and has one possible state $s_{i_{j_{i_{j}}}}$, that state becomes globally required.
Figure 6 b shows that macro state cell $c_{m_{0}}$ has become decided when state row $s_{0_{0}}$ was made impossible. Consequently state row $s_{0_{2}}$ has become required and its impossible CFR $s_{0_{2_{2}}}$ was propagated to all other states, causing state row $s_{2_{1}}$ to become impossible.
The next step is shown in figure 7 a where $\mathrm{CFR} s_{0_{2_{3}}}$ was propagated to all other states, causing state row $s_{3_{0}}$ to become impossible.
Since macro state cell $c_{m_{3}}$ has now become decided, and state $s_{3_{1}}$ has become globally required, CFR $s_{3_{1_{1}}}$ is also propagated as shown in figure 7 b .

P	001	- - -	- $0-$	01
s_{0}	$\bigcirc 00$	0000	000	00
$s_{0_{1}}$	$\bigcirc \circ \bigcirc$	0000	000	00
$s_{\mathrm{O}_{2}}$	$\bigcirc \circ 1$	----	-0-	01
s_{10}	001	$1 \circ \circ \circ$	001	01
$s_{1}{ }_{1}$	001	$\bigcirc 1 \circ \circ$	-0-	01
s_{12}	001	$\bigcirc \circ 1 \circ$	- $0-$	00
s_{13}	001	$\bigcirc \circ \circ 1$	100	01
s_{20}	001	$0---$	$1 \circ \circ$	01
s_{21}	000	0000	$\bigcirc \circ \circ$	00
s_{2}	001	$---0$	$\bigcirc \circ 1$	01
s_{30}	000	0000	000	$\bigcirc \circ$
$s_{3}{ }_{1}$	001	--0-	-0-	$\bigcirc 1$

(a) State $s_{0_{2_{3}}}$ causes impossible state $s_{3_{0}}$

P	001	--0-	- $0-$	01
$s_{0_{0}}$	$\bigcirc \circ \circ$	0000	000	0
$s_{0_{1}}$	$\bigcirc \circ \circ$	0000	000	00
$s_{0_{2}}$	$\bigcirc \circ 1$	--0-	- $0-$	01
s_{10}	001	$1 \circ * \circ$	001	01
s_{11}	001	- $1 *$ ○	-0-	01
s_{12}	000	- ○ * 0	000	00
s_{13}	001	○○* 1	100	01
s_{2}	001	0-0-	$1 \circ \circ$	01
s_{21}	000	0000	$\bigcirc \circ \bigcirc$	00
s_{22}	001	--00	$\bigcirc \circ 1$	01
s_{3}	000	0000	000	\bigcirc
$s_{3}{ }_{1}$	001	--0-	-0-	$\bigcirc 1$

(b) Macro state cell $c_{m_{3}}$ becomes decided

Figure 7: conflict propagation continued

3.5 Requirement Update

When a state row $s_{i_{j}}$ has a bound cell row with required CFR $s_{i_{j_{g_{h}}}}$, the singular states $s_{g_{h_{e_{f}}}}$ of state row $s_{g_{h}}$ will inevitably become global should the state $s_{i_{j_{j}}}$ become the required state of macro state cell $c_{m_{i_{i}}}$.

The singular states of state row $s_{g_{h}}$ for a required state $s_{i_{j_{h}}}$ can therefore be merged locally into the CFR states of state row $s_{i_{j}}$, even when macro state cell $c_{m_{i_{i}}}$ is not yet decided (see also section 7.2). Note that this is not a decision, but still conflict propagation.

```
Algorithm 4 (requirement update of state row \(s_{i_{j}}\) ).
do
    changed \(:=0\)
    for each cell row \(r_{i_{j_{e}}}\) :
        if \(\operatorname{Bnd}\left(r_{i_{j_{e}}}, s_{i_{j_{e}}}\right)\) :
            for each \(s_{i_{j_{g}}}\) :
            prev_state \(:=s_{i_{j_{g_{h}}}}\)
            \(s_{i_{j_{g_{h}}}} \leftarrow s_{e_{f_{g_{h}}}}\)
            if \(s_{i_{j_{g_{h}}}} \neq\) prev_state:
                changed \(:=1\)
until changed \(=0\)
```

When algorithm 4 is applied to the orignal example (see figure 5), it presents with the additionally propagated CFR states $s_{0_{2_{2}}}$ and $s_{1_{2_{0_{2}}}}$ as shown in figure 8

P	----	----	---	--	
$s_{0_{0}}$	$1 \circ \circ \circ$	----	---	--	
$s_{0_{1}}$	$\circ 1 \circ$	$0---$	---	--	
$s_{0_{2}}$	$\circ \circ 1$	$--0-$	$-0-$	01	
$s_{1_{0}}$	$-0-$	$1 \circ \circ \circ \circ$	$0--$	--	
$s_{1_{1}}$	---	$\circ 1 \circ \circ$	$-0-$	01	
$s_{1_{2}}$	--0	$\circ * 1 \circ$	---	1	0
$s_{1_{3}}$	---	$\circ \circ \circ \circ 1$	--0	--	
$s_{2_{0}}$	---	$0---$	$1 \circ \circ$	--	
$s_{2_{1}}$	--0	$-0--$	\circ	$1 \circ$	--
$s_{2_{2}}$	---	---0	$\circ \circ 1$	--	
$s_{3_{0}}$	--0	$-0--$	---	$1 \circ$	
$s_{3_{1}}$	---	$--0-$	---	\circ	1

Figure 8: Original example satoku matrix consolidated

Finally, when a state $s_{i_{j_{h}}}$ changes from possible to impossible, all state rows $s_{e_{f}}$ with a required state $s_{e_{f_{i_{j}}}}$ must also be updated accordingly:

$$
\forall s_{e_{f}}: \operatorname{Req}\left(s_{e_{f_{i_{j}}}}\right) \wedge \operatorname{Pos}\left(s_{i_{j_{g_{h}}}}\right) \wedge s_{i_{j_{g_{h}}}} \leftarrow \operatorname{Imp} \Rightarrow s_{e_{f_{g_{h}}}} \leftarrow \operatorname{Imp}
$$

3.6 Consolidation

Consolidation of a satoku matrix \mathbb{S} is the most important process of structural logic. Changes to a satoku matrix \mathbb{S} cannot generally be introduced in parallel. Each change must be followed by consolidation before introducing the next change ${ }^{2}$.

A satoku matrix \mathbb{S} becomes a consolidated satoku matrix \mathbb{S}_{c}, when the basic deduction rules contradiction check (section 3.3), conflict propagation (section 3.4), and requirement update (section 3.5) have been exhausted.

[^1]
4. Summary of Properties

Table 3 shows a loosely structured overview of properties for structural state entitities defined so far. Conflict relationship is abbreviated as CFR.

atomic state	CFR	cell row	cell	state row	matrix	conditions	
atomic	atomic	macro	hybrid macro	compound	compound		
independent							
mutually exclusive							
possible	possible	possible	possible	possible	possible		
impossible	impossible	impossible	impossible	impossible	impossible		
		unrestricted	unrestricted	unrestricted	unrestricted	$\|\mathrm{Imp}\|=0$	
		restricted	restricted	restricted	restricted	\| 1 mp	> 0
		undecided	undecided	undecided	undecided	\mid Pos $\mid>1$	
		decided	decided	decided	decided	\mid Pos $\mid \leq 1$	
	required	bound				possible decided	
				unconsolidated	unconsolidated		
				consolidated	consolidated		
		conflict	contradiction	conflict	contradiction	impossible	
					provable	possible and (decided or unrestricted)	

Table 3: Summary of properties

5. Mapping CDF Problems

As shown in [MOUNT], all boolean satisfiability problems in conjunctive normal form (CNF) encoding can be mapped to an independent set problem and therefore to an (inverted) adjacency matrix.

The standard definition of a SAT problem P in conjunctive normal form is a conjunction of m disjunctive clauses C_{i} each containing k_{i} literals l_{j}, where a literal l_{j} is a negated or unnegated boolean variable:

$$
\begin{equation*}
P=\bigwedge_{i=0}^{m-1} C_{i}, m=|P|, \quad C_{i}=\bigvee_{i}^{k_{i}-1} l_{j}, k_{i}=\left|C_{i}\right| \tag{32}
\end{equation*}
$$

An empty clause C_{i} is equivalent to the truth value F

$$
\begin{equation*}
\left|C_{i}\right|=0 \rightarrow C_{i} \equiv \mathrm{~F} \tag{33}
\end{equation*}
$$

CNF also comes with various restrictions for disjunctive clauses, like no duplication of literals, not containing both negated and unnegated variables, fixed size k.
CNF encoding is a special case of the more general conjunction of disjunctive conjunctions (CDF)[SCHPDE], where the alternatives of a CNF clause are conjunctions of literals l_{n}

$$
\begin{equation*}
F=\bigwedge_{i=0}^{m-1} C_{i}, m=|F|, \quad C_{i}=\bigvee_{i=0}^{k_{i}-1} A_{j}, k_{i}=\left|C_{i}\right| \quad A_{j}=\bigwedge_{n=0}^{o_{j}-1} l_{n}, o_{j}=\left|A_{j}\right| \tag{34}
\end{equation*}
$$

CDF comes without any restrictions and is suitable to map a problem to a satoku matrix \mathbb{S} with algorithm 5. See appendix 5.2 for an example which uses a simple conflict maximization technique by expanding a CNF into a CDF.

Algorithm 5 (map CDF problem to satoku matrix).
With the CDF problem F consisting of clauses C_{i}
with alternatives $A_{i_{j}}, i=0 . .(|F|-1), j=0 . .\left(\left|C_{i}\right|-1\right)$
Create a satoku matrix \mathbb{S}
for each clause C_{i} :
Add a cell-matrix row c_{i} with $\left|C_{i}\right|$ state rows to \mathbb{S}
Set all atomic and CFR states $s_{i_{j_{g_{h}}}}, g=0 . . i, j, h=0 . .\left(\left|C_{j}\right|-1\right)$ and their mirror states to possible
Set all CFR states $s_{i_{j_{i_{h}}}}, h \neq j, j, h=0 . .\left(\left|C_{i}\right|-1\right)$ to impossible
for each state row $s_{i_{j}}$:
for each cell row $r_{i_{j g}}, g>i$:
for each CFR $s_{i_{j_{g_{h}}}}$:
if $A_{i_{j}} \wedge A_{g_{h}}=F:$
$s_{i_{j_{g_{h}}}} \leftarrow \operatorname{Imp}$
break

The example satoku matrix \mathbb{S} (see figures 5,8) was constructed by mapping the following propositional formula:

$$
\left.\begin{array}{lll}
\left(\begin{array}{lll}
a \vee & b \vee & c
\end{array}\right) & \wedge \\
(\neg b \vee & c \vee \neg d \vee \neg e) & \wedge \\
(b \vee \neg c \vee & e
\end{array}\right) \quad \wedge
$$

5.1 Mapping Propositonal Variables

Although structural logic has no concept of propositional variables, it is still possible to map propositional variables p to a satoku matrix \mathbb{S} in a natural manner. This is achieved by adding clauses of the form:

$$
(p \vee \neg p)
$$

for each propositional variable p to a CDF formula.

5.2 Mapping Example

The example problem is a 3 -variable "AND" with added variable clauses. Equation (35) shows the minimal formula, while equation (36) presents the extended formula with maximized conflicts (see appendix C):

$\neg a \vee \neg b \vee c$	$) \wedge$
$\neg a \vee b \vee \neg c$	\wedge
$\neg a \vee b \vee c$	$) \wedge$
$a \vee \neg b \vee \neg c$	$) \wedge$
$a \vee \neg b \vee c$	$) \wedge$
$a \vee>\vee \neg c$	$) \wedge$
$a \vee b \vee c$	$) \wedge$
$a \vee \neg a$	$) \wedge$
$b \vee \neg b$	$) \wedge$
$c \vee \neg c$)

$(\neg a)$	V	$(a \wedge \neg b)$	V	$(a \wedge b \wedge c)$) \wedge
$(\neg a)$	V	$(a \wedge b)$	V	$(a \wedge \neg b \wedge \neg c)$	$) \wedge$
$(\neg a)$	V	$(a \wedge b)$	V	$(a \wedge \neg b \wedge c)$	$) \wedge$
(a)	V	$(\neg a \wedge \neg b)$	V	$(\neg a \wedge b \wedge \neg c)$	$) \wedge$
(a)	V	$(\neg a \wedge \neg b)$	V	$(\neg a \wedge b \wedge c)$	$) \wedge$
(a)	V	$(\neg a \wedge b)$	V	$(\neg a \wedge \neg b \wedge \neg c)$	$) \wedge$
(a)	V	$(\neg a \wedge b)$	V	$(\neg a \wedge \neg b \wedge c)$	$) \wedge$
(a)	V	$(\neg a)$			$) \wedge$
(b)	V	$(\neg b)$			$) \wedge$
(c)	V	$(\neg c)$)

The satoku matrix $\mathbb{S}_{\text {min }}$ for the minimal formula (35) is shown in figure 10.
The added propositional variable clauses $\mathbb{S}_{\text {min }_{\text {var }}}$ consisting of cells c_{7}, \ldots, c_{9} are separated visually from the relevant core satoku matrix $\mathbb{S}_{\text {min }_{\text {core }}}$, consisting of cells c_{0}, \ldots, c_{6} since they are redundant and not necessary to decide the matrix. This follows directly from the properties of an adjacency matrix and the corresponding independent set problem.

P	---	---									
$\begin{aligned} & { }^{s_{0}} 0_{0} \\ & s_{0} \\ & s_{0} \\ & \hline 0_{2} \end{aligned}$	$\begin{array}{llll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \circ & 1 \end{array}$	$\left\|\begin{array}{l\|} \hline--- \\ -0- \\ --0 \end{array}\right\|$	--- $-0-$ ---1	$\left.\begin{array}{\|l\|} \hline 0-- \\ --- \\ --0 \end{array} \right\rvert\,$	$0--$	$\left\|\begin{array}{c\|} 0-- \\ -0- \\ --0 \end{array}\right\|$	$\left\|\begin{array}{c} 0-- \\ -0- \end{array}\right\|$	$\begin{array}{l\|} \hline 0 \\ \hline \end{array}$	$\begin{array}{\|cc\|} \hline-\quad \\ 0 & 1 \end{array}$	$\left\|\begin{array}{c} --- \\ -- \\ 10 \end{array}\right\|$	$\begin{gathered} \neg a \vee \\ \neg b \vee \\ c \end{gathered}$
$\begin{aligned} & \hline s_{1}{ }_{10} \\ & s_{1} \\ & s_{1} \end{aligned}$	$\begin{aligned} & \hline--- \\ & -0- \\ & --0 \end{aligned}$	$\begin{array}{\|lll\|} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \\ \hline \end{array}$	$\begin{aligned} & \hline--- \\ & --- \\ & -0 \end{aligned}$	$\begin{array}{\|l\|} \hline 0-- \\ -0- \end{array}$	$\begin{array}{\|l\|} \hline 0-0 \\ -0 \\ -0 \\ -0 \end{array}$		$\begin{array}{\|l\|} \hline 0-- \\ --- \\ --0 \end{array}$	$\begin{array}{l\|l\|} \hline 0 & 1 \\ - & \end{array}$	$\begin{array}{\|c} \hline-- \\ 10 \end{array}$	$\begin{array}{\|c\|} \hline-- \\ -- \\ 0 \end{array}$	$\begin{gathered} \neg a \vee \\ b \vee \\ \neg c \end{gathered}$
$\begin{aligned} & s_{2_{2}} \\ & s_{2} \\ & s_{2} \\ & \hline \end{aligned}$	---	$\begin{array}{\|l\|} \hline--- \\ --- \\ --0 \end{array}$	$\begin{array}{\|llll} \hline 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \hline \end{array}$	$\left\|\begin{array}{c} 0-0 \\ -0- \\ -0 \end{array}\right\|$	O--	$\begin{array}{\|l\|} \hline 0-- \\ --- \\ --0 \end{array}$	$\begin{array}{\|c\|} \hline 0-- \\ --- \\ \hline \end{array}$	$\begin{array}{l\|l\|} \hline 01 \\ -- \end{array}$	$\left\|\begin{array}{c} -- \\ 1 \end{array}\right\|$	$\begin{array}{\|c\|} \hline-- \\ -- \\ 10 \\ \hline \end{array}$	$\begin{gathered} \neg a \vee \\ b \vee \\ c \end{gathered}$
$\begin{aligned} & { }^{s_{3}} 0 \\ & s_{3} \\ & { }_{3}{ }_{3} \end{aligned}$	$\begin{aligned} & 0-- \\ & --- \\ & --0 \end{aligned}$	0--	$\begin{aligned} & 0-- \\ & -0- \\ & -0 \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & 0 \\ 0 & \circ & 1 \end{array}$	$\begin{aligned} & --- \\ & --- \\ & -0 \end{aligned}$	---	$\begin{array}{\|l\|} \hline--- \\ -0- \\ --0 \end{array}$	$\begin{array}{l\|} \hline 10 \\ -- \\ \hline \end{array}$	$\left\|\begin{array}{c} --- \\ 0 \\ 0 \\ - \\ - \end{array}\right\|$	$\begin{array}{\|c\|} \hline-- \\ -- \\ 0 \\ \hline \end{array}$	$\begin{gathered} a \vee \\ \neg b \vee \\ \neg c \end{gathered}$
$\begin{aligned} & s_{4_{4}} \\ & s_{4} \\ & s_{4} \end{aligned}$	0 --	$\left\|\begin{array}{c\|} \hline 0-- \\ -0- \\ --0 \end{array}\right\|$	$\begin{array}{\|l\|} 0-- \\ -0-- \end{array}$	$\begin{array}{\|l\|} \hline--- \\ --- \\ --0 \end{array}$	$\left.\begin{array}{\|lll\|} \hline 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right\rvert\,$	$\begin{aligned} & --- \\ & -0- \\ & --0 \end{aligned}$	--- $-0-1$	$\begin{gathered} 10 \\ -- \\ \hline \end{gathered}$	--	$\begin{array}{\|c\|} \hline-- \\ -- \\ 1 \end{array}$	$\begin{gathered} a \vee \\ -b \vee \\ c \end{gathered}$
$\begin{aligned} & { }^{s_{5}}{ }^{s_{5}} \\ & s_{5} \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	0--	$\left\|\begin{array}{l} 0-- \\ --- \\ --0 \end{array}\right\|$	---	$\begin{aligned} & \hline--- \\ & -0- \\ & --0 \end{aligned}$	$\left.\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right\rvert\,$	--- --- --0	$\begin{aligned} & 10 \\ & -10 \end{aligned}$	--	$\begin{array}{\|l\|} \hline-- \\ -- \\ 0 \\ \hline \end{array}$	$\begin{gathered} a \vee \\ b \vee \\ -c \end{gathered}$
$\begin{aligned} & \hline s_{6_{0}} \\ & s_{6} \\ & s_{6} \\ & s_{6} \\ & \hline \end{aligned}$	0--	$\begin{array}{\|l\|} \hline 0-- \\ --- \\ --0 \end{array}$	0 -	--- $\begin{aligned} & -- \\ & -0- \\ & --0\end{aligned}$	---	---	$\begin{array}{llll} 1 & \circ & \circ \\ 0 & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{gathered} \hline 10 \\ -- \end{gathered}$	--	$\begin{array}{\|c\|} \hline-- \\ -- \\ 1 \end{array}$	$\begin{aligned} & a \vee \\ & b \vee \\ & c \end{aligned}$
$\begin{aligned} & { }^{{ }^{7_{0}}} \\ & s_{7} \\ & \hline \end{aligned}$	0--	0--	0	$\begin{array}{\|l\|} \hline--- \\ 0-- \end{array}$	$\overline{0}$	$\begin{aligned} & \hline--- \\ & 0-- \end{aligned}$	$\begin{array}{\|c\|\|} \hline--- \\ 0-- \\ \hline \end{array}$	$\begin{array}{lll} \hline 1 & 0 \\ \circ & 1 \end{array}$	$\overline{--}$	$\mid--$	a
$\begin{aligned} & { }^{s_{8}} \\ & s_{8} \\ & \hline \end{aligned}$	-0-	$\left.\begin{array}{\|l\|} \hline--- \\ -0 \end{array} \right\rvert\,$	---	- 0 -	- 0 -	-- $-0-$	--- $-0-$	$--$	$\begin{array}{\|ll\|} \hline 1 & \circ \\ 0 & 1 \end{array}$	$-$	$\begin{array}{r} b \\ -b \end{array}$
$\begin{aligned} & s_{9_{0}} \\ & s_{9} \\ & \hline \end{aligned}$	--- --0	--0	$\left\lvert\, \begin{aligned} & --- \\ & --0 \end{aligned}\right.$	--0	---	--0	$\left\lvert\, \begin{aligned} & --- \\ & --0 \end{aligned}\right.$	$--$	--	$\begin{array}{\|ll\|} \hline 1 & \circ \\ 0 & 1 \\ \hline \end{array}$	$\begin{array}{r} c \\ \neg c \end{array}$

Figure 10: satoku matrix for plain 3-variable "AND"

The satoku matrix $\mathbb{S}_{\max }$ for the formula with maximized conflicts (36) as shown in figure 11 has some interesting properties.
Foremost, all macro state cells $c_{m_{i_{i}}}$ of the consolidated matrix $\mathbb{S}_{\max }$ are decided. It follows directly from the deduction rules, namely requirement update (section 3.5), that all possible state rows $s_{i_{j}}$ are necessarily equivalent.

The solution for the mapped propositional formula can be directly derived by examining the decided 2 -state macro state cells $c_{m_{77}}, c_{m_{8_{8}}}, c_{m_{9_{9}}}$, representing the propositional variables a, b, c. Only the atomic states $s_{7_{0}} \mapsto a, s_{8_{0}} \mapsto b$ and $s_{9_{0}} \mapsto c$ are possible, the states for $s_{7_{1}} \mapsto \neg a, s_{8_{1}} \mapsto \neg b$ and $s 9_{1} \mapsto \neg c$ are impossible. Therefore the only solution to the original problem is $a \wedge b \wedge c$.

P	001	010	010	100	100	100	100	10	10	1	
$s_{0_{0}}$	$\bigcirc \circ \circ$	000	000	000	000	000	000	00	00	00	\neg
$s_{0_{1}}$	$\bigcirc \circ \circ$	000	000	000	000	000	000	00	00	00	$a \wedge \neg b$
$s_{0_{2}}$	$\bigcirc \circ 1$	010	010	100	100	100	100	10	10	10	$a \wedge b \wedge$
$s_{1_{0}}$	000	$\bigcirc \circ \circ$	000	000	000	000	000	00	00	00	$\neg a$
$s_{1_{1}}$	001	-1。	010	100	100	100	100	10	10	10	$a \wedge b$
$s_{1_{2}}$	000	$\bigcirc \circ \circ$	000	000	000	000	000	00	00	00	$a \wedge \neg b \wedge \neg c$
s_{2}	000	000	$\bigcirc \circ \circ$	000	000	000	000	00	00	00	a
$s_{2_{1}}$	001	010	- 1 ○	100	100	100	100	10	10	10	$a \wedge b$
$s_{2_{2}}$	000	000	- ○ ○	000	000	000	000	00	00	00	$a \wedge \neg b \wedge$
s_{30}	001	010	010	100	100	100	100	10	10	10	,
$s_{3_{1}}$	000	000	000	$\bigcirc \circ \circ$	000	000	000	00	00	00	$\neg a \wedge \neg b$
$s_{3_{2}}$	000	000	000	$\bigcirc \circ \circ$	000	000	000	00	00	00	$\neg a \wedge b \wedge \neg c$
s_{40}	001	010	010	100	$1 \circ \circ$	100	100	10	10	10	a
$s_{4_{1}}$	000	000	000	000	$\bigcirc \circ \circ$	000	000	00	00	00	$\neg a \wedge \neg b$
$s_{4_{2}}$	000	000	000	000	$\bigcirc \circ \circ$	000	000	00	00	00	$\neg a \wedge b \wedge c$
s_{50}	001	010	010	100	100	$1 \circ \circ$	100	10	10	10	a
s_{51}	000	000	000	000	000	- ○ ○	000	00	00	00	$\neg a \wedge b$
s_{5}	000	000	000	000	000	$\bigcirc \circ \circ$	000	00	00	00	$\neg a \wedge \neg b \wedge \neg c$
s_{6}	001	010	010	100	100	100	$1 \circ \circ$	10	10	10	a
$s_{6}{ }_{1}$	000	000	000	000	000	000	$\bigcirc \circ \circ$	00	00	00	$\neg a \wedge b$
$s_{6_{2}}$	000	000	000	000	000	000	- ○ ○	00	00	00	$\neg a \wedge \neg b \wedge$
$s_{7_{0}}$	001	010	010	100	100	100	100	$1 \circ$	0	0	a
$s_{7_{1}}$	000	000	000	000	000	000	000	$\bigcirc \circ$	00	00	$\neg{ }^{\text {a }}$
$s_{8}{ }_{0}$	001	010	010	100	100	100	100	10	$1 \circ$	10	b
$s_{8_{1}}$	000	000	000	000	000	000	000	00	- ○	00	$\neg b$
$s_{9_{0}}$	001	010	010	100	100	100	100	10	10	$1 \circ$	c
$s_{9_{1}}$	000	000	000	000	000	000	000	00	00	-	$\neg c$

Figure 11: satoku matrix for 3-variable "AND" with maximized conflicts

6. Conflict Sequence Relations

For conflict sequence relations, the conflict relationships of state rows $s_{i_{j}}$ are compared as bit sequences. Since the set of possible CFR positions and the set of impossible CFR positions of a state row $s_{i_{j}}$ are disjoint, it is sufficient to consider only one set of CFRs. The choice is to use impossible CFRs, since the merge operation Mrg (see section 2.2.1) results either in an unchanged or greater numer of impossible CFRs, i.e., the number of possible combinations between state rows is constant or decreases.

6.1 Basic Conflict Subsequence

If there is an impossible CFR $s_{e_{f_{g_{h}}}}$ for each impossible CFR $s_{i_{j_{g_{h}}}}$ of state rows $s_{i_{j}}$ and $s_{e_{f}}$, then $s_{i_{j}} \begin{gathered}\text { basic conflict sub- } \\ \text { sequence }\end{gathered}$ is a basic conflict subsequence of $s_{e_{f}}$,

$$
\begin{align*}
& \forall s_{i_{j_{g_{h}}}}, \forall s_{e_{f_{g_{h}}}}, s_{i_{j_{g_{h}}}} \in s_{i_{j}}, s_{e_{f_{g_{h}}}} \in s_{e_{f}}: \tag{37}\\
& \quad \operatorname{Imp}\left(s_{i_{j_{g_{h}}}}\right) \rightarrow \operatorname{Imp}\left(s_{e_{f_{g_{h}}}}\right) \Leftrightarrow s_{i_{j}} \subseteq s_{e_{f}} .
\end{align*}
$$

If there is at least one impossible CFR $s_{i_{g_{h}}}$ in $s_{i_{j}}$ where the corresponding CFR $s_{e_{f_{g_{h}}}}$ in $s_{e_{f}}$, is possible it implies that the relative conflict complement $s_{i_{j}} \backslash s_{e_{f}}$ of two state rows is not empty

$$
\begin{align*}
& \forall s_{i_{j}}, \forall s_{e_{f}}, \exists s_{i_{j_{g_{h}}}}, \exists s_{e_{f_{g_{h}}}}, s_{i_{j_{g_{h}}}} \in s_{i_{j}}, s_{e_{f_{g_{h}}}} \in s_{e_{f}}: \\
& \quad \operatorname{Imp}\left(s_{i_{j_{g_{h}}}}\right) \wedge \operatorname{Pos}\left(s_{e_{f_{g_{h}}}}\right) \Leftrightarrow s_{i_{j}} \backslash s_{e_{f}} \neq \emptyset . \tag{38}
\end{align*}
$$

If $s_{i_{j}}$ is a conflict subset of $s_{e_{f}}$ and the relative conflict complement $s_{e_{f}} \backslash s_{i_{j}}$ is not empty it implies a true conflict subsequence relation $s_{i_{j}} \subset s_{e_{f}}$

$$
\begin{align*}
& s_{i_{j}} \subseteq s_{e_{f}} \wedge s_{e_{f}} \backslash s_{i_{j}} \neq \emptyset \tag{39}\\
& \Leftrightarrow s_{i_{j}} \subset s_{e_{f}} .
\end{align*}
$$

If $s_{i_{j}}$ is a conflict subset of $s_{e_{f}}$ and $s_{e_{f}}$ is also a conflict subset of $s_{i_{j}}$ then the conflict subsets are equal

$$
\begin{align*}
& s_{i_{j}} \subseteq s_{e_{f}} \wedge s_{e_{f}} \subseteq s_{i_{j}} \tag{40}\\
& \Leftrightarrow s_{i_{j}}=s_{e_{f}} .
\end{align*}
$$

If both, the relative conflict complement $s_{e_{f}} \backslash s_{i_{j}}$ and the relative conflict complement $s_{i_{j}} \backslash s_{e_{f}}$ are not empty it implies that the conflict sequences are mutually exclusive $s_{i_{j}} \uparrow s_{e_{f}}$

$$
\begin{align*}
& s_{i_{j}} \backslash s_{e_{f}} \neq \emptyset \wedge s_{e_{f}} \backslash s_{i_{j}} \neq \emptyset \tag{41}\\
& \Leftrightarrow s_{i_{j}} \uparrow s_{e_{f}} .
\end{align*}
$$

Figure 12 shows several examples for basic conflict subsequences. Note, that the excerpt is not a valid satoku matrix, but was prepared to illustrate the principle of basic conflict subsequences.

Figure 12: Examples for basic conflict subsequences

6.2 Special Properties of bound Cell Rows

The simple definition of a basic conflict subsequence in (37) implies that a valid consolidated satoku matrix cannot have any basic conflict subsequences within the same cell matrix row c_{i} at all, since all cell rows $r_{i_{g_{i}}}$ are bound and therefore all cell row pairs $\left(r_{i_{g_{i}}}, r_{i_{h_{i}}}\right), g \neq h$ are mutually exclusive as defined in (14), which implies that all state row pairs $\left(s_{i_{g}}, s_{i_{h}}\right)$ are also mutually exclusive:

$$
\begin{align*}
& \forall\left(r_{i_{g_{i}}}, r_{i_{i_{i}}}\right), r_{i_{g_{i}}} \in s_{i_{g}}, r_{i_{i_{i}}} \in s_{i_{h}}, g \neq h: \\
& \operatorname{Bnd}\left(r_{i_{g_{i}}}\right) \wedge \operatorname{Bnd}\left(r_{i_{h_{i}}}\right) \Rightarrow \operatorname{Mutex}\left(r_{i_{g_{i}}}, r_{i_{i_{i}}}\right) \Rightarrow \operatorname{Mutex}\left(s_{i_{g}}, s_{i_{h}}\right) \tag{42}
\end{align*}
$$

|:todo:| Derive conflict subsets/supersets from cell rows
A bound cell row $r_{i_{j_{g}}}$ with possible state $s_{i_{j_{g_{h}}}}$ in a consolidated satoku matrix implies that all direct conflicts from $s_{g_{h}}$ are already merged into state row $s_{i_{j}}$.
Therefore no additional impossible CFRs can be derived from that cell row. In relation to the corresponding cell rows of other state rows it acts as if it was unrestricted.

A full resolution of $s_{i_{j}}$ with all states $s_{g_{f}}$ in c_{g} will confirm

$$
\begin{align*}
& \forall s_{g_{f}}: \\
& \quad \operatorname{Bnd}\left(s_{i_{j}}, s_{g_{h}}\right) \backslash r_{i_{j_{g}}} \subseteq \neg \operatorname{Bnd}\left(s_{i_{j}}, s_{g_{h}}\right) \backslash r_{i_{j_{g}}} \tag{43}\\
& \quad \leftrightarrow \operatorname{Bnd}\left(s_{i_{j}}, s_{g_{h}}\right) \subseteq \operatorname{Bnd}\left(s_{i_{j}}, s_{g_{f}}\right)
\end{align*}
$$

|:todo:| distractor subsequence is part of an immediate indirect conflict
check, what happens

6.3 Hamming Weight

"The Hamming weight of a string is the number of symbols that are different from the zero-symbol of the alphabet used." [wiki-hammwt] As a cell row can be interpreted as a string of binary digits, its Hamming weight is equal to the number of ones in that bit string.

Besides mentioning special processor instructions like popcnt the Wikipedia page also provides efficient popcount implementations returning the Hamming weight for 64 bit and 32 bit integers. With a popcount function returning the Hamming weight of a bitstring (represented as integer), we get

$$
\begin{align*}
\operatorname{Inv}\left(r_{i_{j_{g}}}\right) & \Leftrightarrow r_{i_{j_{g}}} \underline{\vee}-1 \\
\operatorname{Und}\left(r_{i_{j_{g}}}\right) & \Leftrightarrow \operatorname{popcount}\left(r_{i_{j_{g}}}\right)>1 \\
\operatorname{Dec}\left(r_{i_{j_{g}}}\right) & \Leftrightarrow \operatorname{popcount}\left(r_{i_{j_{g}}}\right) \leq 1 \\
\operatorname{Bnd}\left(r_{i_{j_{g}}}\right) & \Leftrightarrow \operatorname{popcount}\left(r_{i_{g}}\right)=1 \tag{44}\\
\operatorname{Unr}\left(r_{i_{j_{g}}}\right) & \Leftrightarrow \operatorname{popcount}\left(\operatorname{Inv}\left(r_{i_{j_{g}}}\right)\right)=0 \\
\operatorname{Rst}\left(r_{i_{j_{g}}}\right) & \Leftrightarrow \operatorname{popcount}\left(\operatorname{Inv}\left(r_{i_{j_{g}}}\right)\right)>0 .
\end{align*}
$$

7. Satoku Matrix Transformations

The satoku matrix offers various ways to transform one state representation into another state representation, preserving provability. A 3-variable propositional XOR as shown in figure 13 is chosen as an example to demonstrate structural analysis of propositional problems with the satoku matrix. Due to the XOR structure, the DPLL resolution algorithm delivers no useful results. There are also no clauses to be learned.

$$
\begin{array}{ll}
(\neg a \vee \neg b \vee c) & \wedge \\
(\neg a \vee b \vee \neg c) & \wedge \\
(a \vee \neg b \vee \neg c) & \wedge \\
(a \vee b \vee c) &
\end{array}
$$

Figure 13: 3-variable XOR

7.1 Distractors

Based on the conflict sequences relations in section 6, it is possible to eliminate state rows that are supersets of other state rows in the same cell.

7.2 Advance Decisions

|:todo:| derive advance decisions from distractors

- Duplicate state row
- create alternatives:
- require other state row: Sreq
- exclude other state row: Smex
- if Sreq is a subset of Smex, eliminate Smex

A state row $s_{i_{j}}$ is said to be a superset of state row $s_{e_{f}}$, when state row $s_{i_{j}}$ and state row $s_{e_{f}}$ are combinable in a consolidated satoku matrix \mathbb{S} and all impossible CFR states $s_{e_{f_{g_{h}}}}$ of undecided cell rows $r_{e_{f_{g}}}$ also appear as impossible CFR states $s_{i_{j_{g_{h}}}}$ in state row $s_{i_{j}}$:

$$
\begin{aligned}
& \operatorname{Con}(\mathbb{S}) \wedge \operatorname{Cmb}\left(s_{i_{j}}, s_{e_{f}}\right) \wedge \\
& \forall r_{e_{f_{g}}} \forall s_{e_{f_{g_{h}}}}: \operatorname{Und}\left(r_{e_{f_{g}}}\right) \wedge \operatorname{Imp}\left(s_{e_{f_{g_{h}}}}\right) \rightarrow \operatorname{Imp}\left(s_{i_{j_{g_{h}}}}\right) \\
\Leftrightarrow \quad & s_{i_{j}} \supseteq s_{e_{f}}
\end{aligned}
$$

When $s_{i_{j}}$ is a superset of state row $s_{g_{h}}, i \neq g$, state row $s_{i_{j}}$ can be transformed to require state row $s_{g_{h}}$ without affecting provability of a satoku matrix \mathbb{S}.
The proof uses the obvious fact, when state row $s_{i_{j}}$ is a superset of state row $s_{e_{f}}$, that for all impossible CFR states $s_{e_{f_{g_{h}}}}$ of the undecided cell rows $r_{e_{f_{g}}}$ of a state row $s_{e_{f}}$ the state row $s_{g_{h}}$ has an impossible CFR $s_{g_{h_{e_{f}}}}$ (due to mirror property). Since state row $s_{i_{j}}$ is a superset of state row $s_{e_{f}}$, CFR $s_{i_{j_{g_{h}}}}$ must also be impossible. Therefore, CFR $s_{g_{h_{i_{j}}}}$ must also be impossible (mirror property):

$$
\forall s_{g_{h}}: s_{i_{j}} \supseteq s_{e_{f}} \wedge \operatorname{Mutex}\left(s_{g_{h}}, s_{e_{f}}\right) \rightarrow \operatorname{Mutex}\left(s_{g_{h}}, s_{i_{j}}\right)
$$

The provability of a satoku matrix \mathbb{S} would only change, if there was a state row $s_{g_{h}}$, where CFR $s_{g_{h_{e_{f}}}}$ was impossible and CFR $s_{g_{h_{i_{j}}}}$ was required and therefore possible. However, we have just shown, that such a condition cannot exist in a consolidated satoku matrix \mathbb{S}, when $s_{i_{j}} \supseteq s_{e_{f}}$.

P	---	---	---	---	--	--	--	
$\begin{aligned} & s_{0_{0}} \\ & s_{0_{1}} \\ & s_{0_{2}} \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & -0- \\ & --0 \end{aligned}$	$\begin{aligned} & 0-- \\ & --- \\ & --0 \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \\ & -0-- \end{aligned}$	$\begin{array}{l\|} 01 \\ --- \\ - \end{array}$	- 1 --	$\left.\begin{array}{\|c\|} \hline-- \\ -- \\ 10 \end{array} \right\rvert\,$	
$\begin{aligned} & s_{1_{0}} \\ & s_{1_{0}} \\ & s_{1_{1}} \\ & s_{1_{2}} \end{aligned}$	$\begin{aligned} & \hline-00 \\ & --- \\ & -0- \\ & --0 \end{aligned}$	$\begin{array}{\|lll\|} \hline 1 & \circ & \circ \\ 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{\|c\|} \hline 0-- \\ 0-- \\ -0- \end{array}$	$\begin{array}{\|l\|} \hline 0-- \\ 0-- \\ --- \\ --0 \end{array}$	$\begin{aligned} & 01 \\ & 01 \\ & -1 \\ & --- \end{aligned}$	$\left\|\begin{array}{c} -- \\ -- \\ 10 \\ -- \end{array}\right\|$	$\begin{array}{\|l\|l\|} \hline-- \\ -- \\ -- \\ 0 & 1 \\ \hline \end{array}$	
$\begin{aligned} & s_{2_{0}} \\ & s_{2_{1}} \\ & s_{2_{2}} \end{aligned}$	$\begin{aligned} & \hline 0-- \\ & --- \\ & --0 \end{aligned}$	$\begin{gathered} 0-- \\ -0- \end{gathered}$	$\begin{array}{lll} 1 & \circ & 0 \\ \circ & 1 & 0 \\ \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{array}{\|l\|} \hline--- \\ -0- \\ --0 \end{array}\right.$	$\begin{aligned} & 10 \\ & -- \\ & -- \end{aligned}$	- -1	$\begin{array}{\|c\|} \hline-- \\ -- \\ 0 \\ \hline \end{array}$	
$\begin{aligned} & s_{3_{0}} \\ & s_{3_{1}} \\ & s_{3_{2}} \end{aligned}$	$0--$ $-0-$ ---	$\begin{aligned} & 0-- \\ & --- \\ & --0 \end{aligned}$	$\left\lvert\, \begin{aligned} & --- \\ & -0- \\ & --0\end{aligned}\right.$	$\begin{array}{\|lll\|} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \\ \hline \end{array}$	10 -- --	- 10	-- -1 10	
$\begin{aligned} & s_{4_{0}} \\ & s_{4_{1}} \end{aligned}$	0--	$0--$ ---1	$\begin{aligned} & --- \\ & 0-- \end{aligned}$	$\begin{aligned} & --- \\ & 0-- \end{aligned}$	$\begin{array}{ll} \hline 1 \circ \\ \circ & 1 \end{array}$	--	---	a $\neg a$
$\begin{aligned} & s_{5_{0}} \\ & s_{5_{1}} \end{aligned}$	-0-	$\begin{aligned} & --- \\ & -0- \end{aligned}$	-0-	--- $-0-$	$\begin{aligned} & -- \\ & -- \end{aligned}$	$\begin{array}{ll} \hline 1 & \circ \\ \circ & 1 \end{array}$	--	$\begin{array}{r} b \\ \neg b \end{array}$
$\begin{aligned} & s_{6_{0}} \\ & s_{6_{1}} \end{aligned}$	$\begin{aligned} & --- \\ & --0 \end{aligned}$	--0	--0	--- --0	--	--	$\begin{array}{\|ll\|} \hline 1 & \circ \\ \hline & 1 \\ \hline \end{array}$	c \neg c

(a) ex-xor-3.v-000

P	---	---	---	---	--	--	--	
$\begin{aligned} & s_{0_{0}} \\ & s_{0_{1}} \\ & s_{0_{2}} \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{ll} -\overline{-} & - \\ 0 & 0 \\ 0 & - \\ 0 & -0 \end{array}$	$\begin{aligned} & 0-- \\ & --- \\ & --0 \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \\ & --- \end{aligned}$	$\begin{aligned} & 01 \\ & -2 \\ & --- \end{aligned}$	$\begin{array}{\|c\|} \hline-- \\ 0 \\ \hline \end{array}$	$\left.\begin{array}{\|c\|} \hline-- \\ -- \\ 10 \end{array} \right\rvert\,$	
$\begin{aligned} & s_{1_{0}} \\ & s_{1_{1}} \\ & s_{1_{2}} \end{aligned}$	$\begin{aligned} & -00 \\ & -0- \\ & --0 \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{gathered} 0-- \\ -0- \end{gathered}\right.$	$\begin{aligned} & 0-- \\ & --- \\ & --0 \end{aligned}$	$\begin{aligned} & 01 \\ & - \\ & -- \\ & -\quad \end{aligned}$	---	$\left.\begin{array}{\|c} \hline-- \\ -- \\ 01 \end{array} \right\rvert\,$	
$\begin{aligned} & s_{2_{0}} \\ & s_{2_{1}} \\ & s_{2} \end{aligned}$	$\begin{aligned} & \hline 0-- \\ & --- \\ & --0 \end{aligned}$	$\begin{gathered} 0-- \\ -0- \end{gathered}$	$\begin{array}{llll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & --- \\ & -0- \\ & --0 \end{aligned}$	$\begin{aligned} & 10 \\ & -2 \\ & --- \end{aligned}$		$\begin{aligned} & \hline-- \\ & -- \\ & 01 \end{aligned}$	
$\begin{aligned} & s_{3_{0}} \\ & s_{3_{1}} \\ & s_{3_{2}} \end{aligned}$	$0--$ $-0-$	$\begin{array}{\|l\|} \hline 0-- \\ --- \\ --0 \end{array}$	$\begin{aligned} & --- \\ & -0- \\ & --0 \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ 0 & 1 & \circ \\ \circ & \circ & 1 \end{array}$	10 -- --	--	$\left.\begin{array}{\|c} \hline-- \\ -- \\ 10 \end{array} \right\rvert\,$	
$\begin{aligned} & s_{4_{0}} \\ & s_{4_{1}} \end{aligned}$	0--	0--	$\begin{aligned} & --- \\ & 0-- \end{aligned}$	$0--$	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	--		$\begin{array}{r} a \\ \neg a \end{array}$
$\begin{aligned} & s_{5_{0}} \\ & s_{5_{1}} \end{aligned}$	-0-	$\begin{aligned} & --- \\ & -0- \end{aligned}$	-0-	$\begin{aligned} & --- \\ & -0- \end{aligned}$	--	$\begin{array}{\|ll\|} \hline 1 & \circ \\ \circ & 1 \end{array}$	--	$\begin{array}{r} b \\ \neg b \end{array}$
$\begin{aligned} & s_{6_{0}} \\ & s_{6_{1}} \end{aligned}$	--- --0	--0	--0	--- --0	--	--	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	c \neg c

(b) ex-xor-3.v-001

Figure 14: Advance decision stage 1

P	---	---	---	---	-	--	--	
$\begin{aligned} & s_{0_{0}} \\ & s_{0_{1}} \\ & s_{0_{2}} \\ & \hline \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{lll} - & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array}$	$\begin{gathered} 0-- \\ -- \\ 10 \end{gathered}$	$\begin{array}{lll} 0 & - & - \\ 1 & 0 & 0 \\ - & - & - \end{array}$	$\begin{array}{ll}0 & 1 \\ 1 & 0 \\ 1 & 0\end{array}$	$\begin{array}{ll} - & - \\ 0 & 1 \\ 1 & 0 \end{array}$	$\left\|\begin{array}{cc} - & - \\ 0 & 1 \\ 1 & 0 \end{array}\right\|$	
$\begin{aligned} & s_{1_{0}} \\ & s_{1} \\ & s_{1_{2}} \\ & \hline \end{aligned}$	$\begin{array}{lll} 1 & 0 & 0 \\ 0 & 0 & - \\ 0 & -0 \end{array}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left\|\begin{array}{c} 0-- \\ -0- \\ --- \end{array}\right\|$	$\left\lvert\, \begin{gathered} 0-- \\ --- \\ --0 \end{gathered}\right.$	01	$\begin{array}{\|c\|} \hline-- \\ 1 \\ \hline \end{array}$	$\begin{array}{\|c} -- \\ -- \\ 01 \end{array}$	
$\begin{aligned} & s_{2_{0}} \\ & s_{2_{1}} \\ & s_{2} \\ & \hline \end{aligned}$		$\begin{aligned} & 0-- \\ & -0- \\ & --- \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$-0-$ $--0$	1	$\begin{aligned} & -- \\ & 01 \\ & -- \end{aligned}$	$\begin{aligned} & -- \\ & -- \\ & 01 \end{aligned}$	
$\begin{aligned} & s_{3_{0}} \\ & s_{3_{1}} \\ & s_{3} \\ & \hline \end{aligned}$		$\begin{aligned} & 0-- \\ & --- \\ & --0 \end{aligned}$	$\begin{array}{\|l\|} \hline--- \\ -0- \\ --0 \\ \hline \end{array}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	10	-- 10 --	$\left.\begin{array}{\|c} -- \\ -- \\ 10 \end{array} \right\rvert\,$	
$\begin{aligned} & s_{4_{0}} \\ & s_{4_{1}} \end{aligned}$	$\begin{aligned} & 0-\quad \\ & 100 \end{aligned}$	$\begin{gathered} 0-- \\ --- \end{gathered}$	$\begin{aligned} & --- \\ & 0-- \end{aligned}$	$\left\lvert\, \begin{aligned} & --- \\ & 0-- \end{aligned}\right.$	1	$\begin{aligned} & -- \\ & -- \end{aligned}$	$\left\lvert\, \begin{aligned} & -- \\ & -- \end{aligned}\right.$	a $\neg a$
$\begin{aligned} & s_{5_{0}} \\ & s_{5_{1}} \end{aligned}$	$\begin{aligned} & -0- \\ & --0 \end{aligned}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	-0-	$\begin{aligned} & --- \\ & -0- \end{aligned}$	-	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	$\begin{aligned} & -- \\ & -- \end{aligned}$	$\begin{array}{r} b \\ \neg b \end{array}$
$\begin{aligned} & s_{6_{0}} \\ & s_{6} \end{aligned}$	$\begin{aligned} & -0- \\ & --0 \end{aligned}$	--0	$\left\lvert\, \begin{aligned} & --0 \\ & ---\end{aligned}\right.$	--- --0	-	--	$1 \begin{array}{ll}1 & \circ \\ \circ & 1\end{array}$	$\begin{array}{r}c \\ \neg \\ \hline\end{array}$

(a) ex-xor-3.v-002

P	---	---	---	---	--	--	--	
$\begin{gathered} s_{0_{0}} \\ s_{0_{1}} \\ s_{0_{2}} \\ \hline \end{gathered}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{llll} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array}$	$\begin{gathered} 0-- \\ --- \\ 100 \end{gathered}$	$\begin{array}{lll} 0 & - & - \\ 1 & 0 & 0 \\ - & - & - \end{array}$	$\begin{array}{ll} \hline 0 & 1 \\ 1 & 0 \\ 1 & 0 \end{array}$	$\left.\begin{array}{\|cc\|} \hline & - \\ 0 & 1 \\ 1 & 0 \end{array} \right\rvert\,$	$\begin{array}{cc} - & - \\ 0 & 1 \\ 1 & 0 \end{array}$	
$\begin{aligned} & s_{1_{0}} \\ & s_{1} \\ & s_{1} \end{aligned}$	$\begin{array}{lll} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & 0-- \\ & 100 \end{aligned}$	$\begin{gathered} 0-- \\ --- \\ 100 \end{gathered}$	$\begin{array}{ll} 0 & 1 \\ 1 & 0 \\ 1 & 0 \end{array}$	$\begin{array}{\|cc\|} \hline 1 & - \\ 0 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{ll} -- & - \\ 1 & 0 \\ 0 & 1 \end{array}$	
$\begin{aligned} & s_{2_{0}} \\ & s_{2_{1}} \\ & s_{2_{2}} \end{aligned}$	$\begin{aligned} & 0-- \\ & --0 \\ & --0 \end{aligned}$	$\left\lvert\, \begin{gathered} 0-- \\ -0- \\ -0- \end{gathered}\right.$	$1 \circ \circ$ - 1 ○ $\circ \circ 1$	$-0-$ --0	1 0 - - $-\quad-$	$\|$-- 0 -	$\left\lvert\, \begin{aligned} & -- \\ & -- \\ & 01 \end{aligned}\right.$	
$\begin{aligned} & s_{3_{0}} \\ & s_{3} \\ & s_{3_{2}} \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \\ & -0- \end{aligned}$	$\begin{array}{\|c} \hline 0-- \\ --0 \\ --0 \end{array}$	$-0-$ --0	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{gathered} 10 \\ -- \\ -- \end{gathered}$	$\begin{array}{\|c\|} \hline-- \\ 10 \\ -- \end{array}$	$\left\|\begin{array}{l} -- \\ -- \\ 10 \end{array}\right\|$	
$\begin{aligned} & s_{4_{0}} \\ & s_{4_{1}} \end{aligned}$	$\begin{aligned} & 0-- \\ & 100 \end{aligned}$	$\begin{array}{lll} \hline 0 & - & - \\ 1 & 0 & 0 \end{array}$	$\begin{aligned} & --- \\ & 0-- \end{aligned}$	$\begin{aligned} & \hline--- \\ & 0-- \end{aligned}$	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	$\begin{aligned} & -- \\ & -- \end{aligned}$	$\begin{aligned} & -- \\ & -- \end{aligned}$	a $\neg a$
$\begin{aligned} & s_{5_{0}} \\ & s_{5_{1}} \end{aligned}$	$\begin{aligned} & -0- \\ & --0 \end{aligned}$	$\begin{aligned} & --0 \\ & -0- \end{aligned}$	\|$-0-$ ---	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{aligned} & -- \\ & -- \end{aligned}$	$\begin{array}{ll} 1 & \circ \\ 0 & 1 \end{array}$	$\begin{aligned} & -- \\ & -- \end{aligned}$	$\begin{array}{r} b \\ \neg b \end{array}$
$\begin{aligned} & s_{6_{0}} \\ & s_{6} \end{aligned}$	$\begin{aligned} & -0- \\ & --0 \end{aligned}$	$\begin{aligned} & --0 \\ & -0- \end{aligned}$	--0	$\left\lvert\, \begin{aligned} & --- \\ & --0\end{aligned}\right.$	-- --	--	$\begin{array}{ll}1 & \circ \\ \circ & 1\end{array}$	$\begin{array}{r}c \\ \neg \\ \hline\end{array}$

(b) ex-xor-3.v-003

Figure 15: Advance decision stage 2

The satoku matrix, generated from the propositional formula in figure 13, is shown in figure 14a. Note that state row $s_{1_{0}}$ has the same impossible CFR states as state row $s_{0_{0}}$. In figure 14 b , cell row $r_{1_{0_{0}}}$ has therefore been transformed to require state row $s_{0_{0}}$.
After consolidation, cell row $r_{0_{0_{1}}}$ has been transformed to require state row $s_{1_{0}}$ in figure 15 a . Figure 15 b shows the satoku matrix after consolidation.

Cell matrix rows c_{0} and c_{1} are both decided and apart from state row permutations, their atomic states are identical:

$$
\forall s_{0_{h}} \exists s_{1_{f}}: s_{0_{h}}=s_{1_{f}} \Rightarrow s_{0_{h_{i_{j}}}}=s_{1_{f_{i_{j}}}}
$$

Since requirement update algorithm 4 merges all impossible singular states from a state row $s_{g_{h}}$ into state row $s_{e_{f}}$, if cell row $r_{e_{f_{g}}}$ is bound and CFR $s_{e_{f_{g_{h}}}}$ is required. Therefore, state row $s_{e_{f}}$ becomes a superset of state row $s_{g_{h}}$.
It follows that if state row $s_{i_{j}}$ is a superset of state row $s_{e_{f}}$, it is then also a superset of state row $s_{g_{h}}$ by transitivity. Therefore bound cell rows $r_{e_{f_{g}}}$ with required CFR $s_{e_{f_{g_{h}}}}$ can be ignored, when determining whether state row $s_{i_{j}}$ is a superset of state row $s_{e_{f}}$.

Proof. Let state row $s_{e_{f}}$ be a superset of state row $s_{g_{h}}$. Let state row $s_{i_{j}}$ be a superset of state row $s_{e_{f}}$, but mutually exclusive with state row $s_{g_{h}}$. It follows that CFR $s_{i_{j_{g_{h}}}}$ is impossible. Therefore, mirror state $s_{g_{h_{i_{j}}}}$ is also impossible. Since state row $s_{e_{f}}$ is a superset of $s_{g_{h}}$, CFR $s_{e_{f_{i_{j}}}}$ must also be impossible and CFR $s_{i_{j_{f}}}$ must also be impossible. Therefore, $s_{i_{j}}$ is mutually exclusive with $s_{e_{f}}$, which means that $s_{i_{j}} \nsupseteq s_{e_{f}}$, since $s_{i_{j}}$ and $s_{e_{f}}$ must be combinable to satisfy the superset conditions.

P	---	---	---	-	-	-	--	
$s_{0_{0}}$	$1 \circ \circ$	100	0--	0--	01	--	--	
$s_{0_{1}}$	$\bigcirc 1 \circ$	001	---	100	10	01	01	
$s_{0_{2}}$	$\bigcirc \circ 1$	010	100		10	10	10	
s_{10}	100	$1 \circ \circ$	0--	0--	01	--	--	
s_{11}	001	-10	100	---	10	10	10	
s_{12}	010	$\bigcirc \circ 1$		100	10	01	01	
s_{20}	0--	0--	$1 \circ \circ$	-00	10	-	-	
s_{21}	--0	-0-	-1 0	00-	--	01	--	
$s_{2}{ }_{2}$	--0	-0-	$\bigcirc \circ 1$	0-0	--	--	01	
s_{30}	0--	$0--$	-00	$1 \circ \circ$	10	--	-	
s_{3}	-0-	--0	00-	$\bigcirc 1 \circ$		10	--	
$s_{3_{2}}$	-0-	--0	0-0	$\bigcirc \circ 1$			10	
s_{4}	0--	0--		---	$1 \circ$	--	--	a
s_{41}	100	100	0--	$0-$	- 1	--	--	$\neg a$
s_{50}	-0-	--0	-0-	---	--	$1 \circ$	--	${ }^{\text {b }}$
s_{51}	--0	-0-		-0-	--	- 1	--	$\neg b$
s_{60}	-0-	--0	--0	--	--	--	$1 \circ$	c
s_{6}	--0	-0-		--0	--	--	$\bigcirc 1$	$\neg c$

(a) ex-xor-3.v-005

P	---	---	---	-	--	--	-	
$s_{0_{0}}$	$1 \circ \circ$	100	0--	0--	01	--	-	
$s_{0_{1}}$	- $1 \circ$	001	100	100	10	01	01	
$s_{0_{2}}$	$\bigcirc \circ 1$	010	100	100	10	10	10	
$s_{1_{0}}$	100	$1 \circ \circ$	0--	0--	01	--	--	
s_{11}	001	-1 0	100	100	10	10	10	
s_{12}	010	$\bigcirc \circ 1$	100	100	10	01	01	
s_{20}	$0--$	$0--$	$1 \circ \circ$	100	10	--	--	
$s_{2}{ }_{1}$	100	100	-1。	001	01	01	10	
$s_{2_{2}}$	100	100	$\bigcirc \circ 1$	010	01	10	01	
s_{30}	0--	0--	100	$1 \circ \circ$	10	--	--	
$s_{3_{1}}$	100	100	001	- $1 \circ$	01	10	01	
s_{32}	100	100	010	- ○ 1	01	01	10	
s_{4}	0--	0--	100	100	1 ○	--	--	a
$s_{4_{1}}$	100	100	0--	0	- 1	--	--	$\neg a$
s_{50}	-0-	--0	-0-	--0	--	$1 \circ$	--	b
s_{51}	$--0$	-0-	--0	-0-	--	- 1	--	$\neg b$
s_{60}	-0-	--0	--0	-0-	--	--	$1 \circ$	c
$s_{6_{1}}$	--0	-0-	-0	--0	-	--	-1	$\neg c$

(b) ex-xor-3.v-006

Figure 16: Advance Decision stage 3

In figure 16a, state row $s_{2_{0}}$ has the same impossible CFR states as state row $s_{3_{0}}$ and cell row $r_{3_{0_{2}}}$ has therefore been transformed to require state row $s_{2_{0}}$, and cell row $r_{2_{03}}$ has been transformed to require state row s_{30}. Figure 16b shows the satoku matrix after consolidation.

The advance decision deduction rule allows to transform a satoku matrix based on a CNF problem into a form which is similar to maximizing conflicts (see appendix C) (compare figure 16b and figure 17) without the need to resort to propositional logic. In contrast to maximizing conflicts this method is resilient to different encodings.
Applying the advance decision deduction rule, is essentially an arbitrary decision that has been made in advance, without an excplicit necessity.

As a rule of thumb, without further analysis, advance decisions for state rows that are equal, i.e. one requires the other, are more desirable. Advance decisions where the most equal state rows can be made to require each other are most desirable.

7.3 Redundancy Removal

The satoku matrix generated from the propositional formula in figure 13 with maximized conflicts is shown in figure 17. The satoku matrix is identical to the one obtained by advance decisions in figure 16b.

P	-	---	---	---	--	--	-	
$s_{0_{0}}$	$1 \circ \circ$	100	0--	$0--$	01	-	--	
s_{01}	-1 0	001	100	100	10	01	01	
$s_{0_{2}}$	$\bigcirc \circ 1$	010	100	100	10	10	10	
s_{10}	100	$1 \circ \circ$	0--	$0--$	01	--	-	
s_{11}	001	- $1 \circ$	100	100	10	10	10	
s_{12}	010	$\bigcirc \circ 1$	100	100	10	01	01	
$s_{2_{0}}$	0--	0--	1 ○ ○	100	10	--	--	
s_{21}	100	100	-1 0	001	01	01	10	
$s_{2}{ }_{2}$	100	100	$\bigcirc \circ 1$	010	01	10	01	
s_{30}	$0--$	$0--$	100	$1 \circ \circ$	10	--	--	
s_{31}	100	100	001	- $1 \circ$	01	10	01	
s_{32}	100	100	010	$\bigcirc \circ 1$	01	01	10	
s_{4}	0--	0--	100	100	$1 \circ$	--	--	a
s_{4}	100	100	0--	0--	- 1	--	--	$\neg a$
s_{50}	-0-	--0	-0-	--0	--	$1 \circ$	-	b
s_{51}	--0	-0-	--0	-0-	--	- 1	--	$\neg b$
$s_{6} 0$	-0-	--0	--0	-0-	--	--	$1 \circ$	c
s_{61}	--0	-0-	-0-	--0	--	--	- 1	$\neg c$

Figure 17: satoku matrix for 3 -variable "XOR" with maximized conflicts

The states in $c_{0_{0}}$ and $c_{1_{1}}$ in figure 17 are structurally equivalent aside from permutation of their states. I.e., for each state $s_{0_{j}}$ there is a corresponding required state $s_{0_{j_{1}}}$. The reverse is also true. It is therefore obvious, that in a consolidated satoku matrix the states in $c_{1_{1}}$ cannot have a different effect on provability than the states in $c_{0_{0}}$. Cell matrix row c_{1} and its mirror column are therefore redundant and can be removed. The same argument holds for cells $c_{2_{2}}$ and $c_{3_{3}}$, which makes cell matrix row c_{3} and its mirror column redundant.
The reduced satoku matrix is shown in figure 18.

P	-	---	--		-	
s_{0}	$1 \circ \circ$	0--	01	--	--	
s_{01}	- $1 \circ$	100	10	01	01	
$s_{0_{2}}$	$\bigcirc \circ 1$	100	10	10	10	
s_{10}	$0--$	$1 \circ \circ$	10	--	-	
s_{1}	100	-10	01	01	10	
s_{12}	100	$\bigcirc \circ 1$	01	10	01	
s_{20}	0--	100	$1 \circ$	--	--	a
s_{21}	100	0--	- 1	--	--	$\neg a$
s_{3}	-0-	-0-	--	1 。	--	b
s_{3}	--0	--0	--	- 1	--	$\neg b$
	-0-	--0	--	--	$1 \circ$	c
s_{4}	--0	-0-	--	--	$\bigcirc 1$	$\neg c$

Figure 18: Redundancies removed from satoku matrix for 3-variable "XOR"

In a consolidated satoku matrix \mathbb{S}, if all cell rows $r_{i_{j_{g}}}$ of a cell $c_{i_{g}}, i \neq g$, are bound, the cell $c_{g_{g}}$ is redundant (Red), since all its atomic states with their direct conflict relationships are fully represented by at least one of the atomic states of cell $c_{i_{i}}$. It is said that Cell $c_{i_{i}}$ covers (Cov) cell $c_{g_{g}}$:

$$
\forall r_{i_{j_{g}}}: \operatorname{Con}(\mathbb{S}) \wedge r_{i_{j_{g}}} \in c_{i_{g}} \wedge \operatorname{Bnd}\left(r_{i_{j_{g}}}\right) \wedge i \neq g \Leftrightarrow \operatorname{Cov}\left(c_{i_{i}}, c_{g_{g}}\right) \Leftrightarrow \operatorname{Red}\left(c_{g_{g}}\right) .
$$

Note that the cells do not have to have the same number of atomic states. E.g., in figure $18, c_{1_{2}}$ consists of CFR states for 3 atomic states and covers $c_{2_{2}}$, which has 2 atomic states.

7.4 Merging Cells

Two or more cells can be merged into a single cell, by adding requirements for all state combinations of the merged cells to a single cell.

The first step of the procedure for cells $c_{0_{0}}, c_{1_{1}}$ is shown in figure 19. A new cell $c_{5_{5}}$ with 9 states has been added in a new section and impossible conflict relationships have been added to conflict relationship cell $c_{5_{0}}$, such that each state from cell $c_{0_{0}}$ will become required 3 times, when the satoku matrix is consolidated.

P	---	---	--	--	--	---------	
$\begin{aligned} & s_{0_{0}} \\ & s_{0} \\ & s_{1} \\ & s_{0_{2}} \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{lll} 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	0 1 1 0 1 0	$\begin{array}{cc}- & - \\ 0 & 1 \\ 1 & 0\end{array}$	$\begin{array}{\|cc\|}- \\ 0 & 1 \\ 1 & 0\end{array}$		
$\begin{aligned} & s_{1} 1_{0} \\ & s_{1} \\ & s_{1} \\ & s_{1} \\ & \hline \end{aligned}$	$\begin{array}{lll} 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{ll} \hline 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{ll} \hline- & - \\ 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{ll} \hline- & - \\ 1 & 0 \\ 0 & 1 \end{array}$		
$\begin{aligned} & s_{2}{ }_{0} \\ & s_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & 0-- \\ & 100 \end{aligned}$	$\|$10 0 0 0 - -	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	-- --	--	--------- --------	a $\neg a$
$\begin{array}{r} s_{3} 3_{0} \\ s_{3} \\ \hline \end{array}$	$\begin{aligned} & -0- \\ & --0 \end{aligned}$	$-0-$ --0	---	$\begin{array}{ll} \hline 1 \circ \\ \circ & 1 \end{array}$	--		$\begin{array}{r} b \\ \neg b \end{array}$
$\begin{array}{r} s_{4} 4_{0} \\ s_{4} \\ \hline \end{array}$	$\begin{aligned} & -0- \\ & --0 \end{aligned}$	--0 $-0-$	--	---	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	----------	$\begin{array}{r} c \\ \neg c \end{array}$
$\begin{aligned} & s_{5_{0}} \\ & s_{5} \\ & s_{1} \\ & s_{5} \\ & s_{5} \\ & s_{3} \\ & s_{5}{ }_{4} \\ & s_{5} 5_{5} \\ & s_{5} \\ & s_{5} \\ & s_{7} \\ & s_{5} 8 \\ & \hline \end{aligned}$	$\begin{array}{lll} \hline-0 & 0 \\ - & 0 & 0 \\ - & 0 & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & 0 & - \\ 0 & 0 & - \\ 0 & 0 & - \end{array}$		$\begin{aligned} & \hline-- \\ & -- \\ & -- \\ & -- \\ & -- \\ & -- \\ & -- \\ & -- \end{aligned}$	-- -- -- -- -- -- -- --	-- --	1 \circ \circ \circ \circ \circ \circ \circ \circ \circ 1 \circ \circ \circ \circ \circ \circ \circ \circ \circ 1 \circ \circ \circ \circ \circ \circ \circ \circ \circ 1 \circ \circ \circ \circ \circ \circ \circ \circ \circ 1 \circ \circ \circ \circ \circ \circ \circ \circ \circ 1 \circ \circ \circ \circ \circ \circ \circ \circ \circ 1 \circ \circ \circ \circ \circ \circ \circ \circ \circ 1 \circ \circ \circ \circ \circ \circ \circ \circ \circ 1	

Figure 19: Merge cells $c_{0_{0}}, c_{1_{1}}$ for 3 -variable "XOR", require states from $c_{0_{0}}$

The second step is shown in figure 19, where impossible conflict relationships have been added to cell $c_{5_{1}}$ such that each state from $c_{1_{1}}$ becomes required 3 times when the satoku matrix is consolidated. The pattern in cells $c_{5_{0}}, c_{5_{1}}$ shows, that the 9 states cover all possible combinations of the states in cells $c_{0_{0}}, c_{1_{1}}$.

P	---	---	--	--	--	---------	
$\begin{aligned} & { }^{s_{0} 0_{0}} \\ & s_{0}{ }_{0} \\ & s_{0}{ }^{s_{2}} \\ & \hline \end{aligned}$	$\begin{array}{lll} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{\|lll\|} \hline 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\begin{array}{lll}0 & 1 \\ 1 & 0 \\ 1 & 0\end{array}$	-- 0 1 1 0	- - 0 1 1 0		
$\begin{aligned} & s_{1} 1_{0} \\ & s_{1} \\ & s_{1} \\ & s_{12} \\ & \hline \end{aligned}$	$\begin{array}{lll} 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{ll} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\left.\begin{array}{\|cc\|} \hline- & - \\ 0 & 1 \\ 1 & 0 \end{array} \right\rvert\,$	- -1		
$\begin{aligned} & s_{20} \\ & s_{2} \\ & \hline \end{aligned}$	$\begin{array}{lll} 0 & - & - \\ 1 & 0 & 0 \end{array}$	1 0 0 0 - -	1 \circ \circ 1	--	-	--	$\begin{array}{r} a \\ \neg a \end{array}$
$\begin{aligned} & { }^{s_{3}{ }_{0}} \\ & s_{3} \\ & \hline \end{aligned}$	$\begin{aligned} & -0- \\ & --0 \end{aligned}$	$\begin{aligned} & -0- \\ & --0 \end{aligned}$	---	$\begin{array}{ll} \hline 10 \\ \circ & 1 \end{array}$		--------- ---------	$\begin{array}{r} b \\ \neg b \end{array}$
$\begin{array}{r} s_{4_{0}} \\ s_{4} \\ \hline \end{array}$	$\begin{aligned} & -0- \\ & --0 \end{aligned}$	$\begin{aligned} & --0 \\ & -0- \end{aligned}$	--	--	$\begin{array}{ll}1 & \circ \\ \circ & 1\end{array}$		$\begin{array}{r} c \\ \neg c \end{array}$
$\begin{aligned} & { }^{s_{5}}{ }_{0} \\ & { }^{s_{5}} 1 \\ & s_{5} \\ & s_{2} \\ & s_{5} \\ & { }^{s_{5}} 4 \\ & s_{5}{ }_{5} \\ & { }^{s_{5}} \\ & { }^{s_{5}} 7 \\ & { }^{s_{5}} 8 \\ & { }^{8} \end{aligned}$	$\begin{array}{lll} \hline-0 & 0 \\ -0 & 0 \\ -0 & 0 \\ 0 & -0 \\ 0 & - & 0 \\ 0 & -0 \\ 0 & 0 & - \\ 0 & 0 & - \\ 0 & 0 & - \end{array}$	$\begin{array}{\|cccc} \hline-0 & 0 & 0 \\ 0 & - & 0 \\ 0 & 0 & - \\ - & 0 & 0 \\ 0 & - & 0 \\ 0 & 0 & - \\ -0 & 0 \\ 0 & - & 0 \\ 0 & 0 & - \end{array}$	-- -- -- -- -- -- --	-- -	-- --	$1 \circ \circ \circ \circ \circ \circ \circ \circ$ - $1 \circ \circ \circ \circ \circ \circ \circ$ $\circ \circ 1 \circ \circ \circ \circ \circ \circ$ $\circ \circ \circ 1 \circ \circ \circ \circ \circ$ - ○ ○ $1 \circ \circ \circ \circ$ $\circ \circ \circ \circ \circ 1 \circ \circ \circ$ $\circ \circ \circ \circ \circ \circ 1 \circ \circ$ $\circ \circ \circ \circ \circ \circ \circ 1 \circ$ $\circ \circ \circ \circ \circ \circ \circ \circ 1$	

Figure 20: Merge cells $c_{0_{0}}, c_{1_{1}}$ for 3 -variable "XOR", require states from $c_{1_{1}}$

After consolidation and removal of impossible states, cell $c_{5_{5}}$ contains 4 possible states as shown in figure 21. Since, by construction, all states from cells $c_{0_{0}}, c_{1_{1}}$ have been transformed and are represented in cell c_{55}, cells $c_{0_{0}}, c_{1_{1}}$ are now redundant and can be removed. Since the variable representations in cells $c_{2_{2}}, c_{3_{3}}, c_{4_{4}}$ are also redundant, as previously shown, the satoku matrix can be reduced to cell c_{55} only.

Cell c_{55} has only states that are decided. The 4 possible solutions for the original propositional formula in figure 13 can be easily derived by constructing the 4 possible variants which cause cell c_{55} to become decided.
$\left.\begin{array}{l|lll|ll|ll|l|ll|lll|l}\hline \mathrm{P} & - & - & - & - & - & - & - & - & - & - & - & - & - & - \\ \hline \hline s_{0_{0}} & 1 & \circ & \circ & 0 & - & - & & 0 & 1 & - & - & - & - & - \\ s_{0_{1}} & \circ & 1 & \circ & 1 & 0 & 0 & 0 & 0 & & 1 & 0 & 0 & 1 & 0 \\ \hline\end{array}\right)$

Figure 21: Merge cells $c_{0_{0}}, c_{1_{1}}$ for 3 -variable "XOR", add states from $c_{1_{1}}$

Note, that the satisfiability of the mapped propositional problem can be deduced without actually deciding the macro state cell $c_{m_{55}}$.
The possible solutions for the propositional problem can also be directly mapped from the decided conflict relations $r_{5 i_{2}}, r_{5 i_{3}}, r_{5 i_{4}}$:

$$
\begin{array}{ll}
(\neg a \wedge \neg b \wedge c) & \vee \\
(\neg a \wedge b \wedge \neg c) & \vee \\
(a \wedge \neg b \wedge \neg c) & \vee \\
(a \wedge b \wedge c) &
\end{array}
$$

Observe, that merging was not really necessary at all, since the possible solutions to the propositional problem already appear in conflict relations $r_{0_{1_{a}}}, r_{0_{2_{a}}}, r_{1_{1_{a}}}, r_{1_{2_{a}}}, a=(2,3,4)$.
Also, provability of the satoku matrix can already be deduced from each of the decided relevant conflict relations $r_{0_{1_{1}}}, r_{0_{2_{1}}}, r_{1_{1_{0}}}, r_{1_{2_{0}}}$ of states $s_{0_{1}}, s_{0_{2}}, s_{1_{1}}, s_{1_{2}}$ independently.
When mapping the conflict relations in $r_{0_{0_{a}}}, r_{1_{0_{a}}}, a=(2,3,4)$ to their propositional variable equivalents, they represent partial assignments for the boolean satisfiability problem.

Obviously, merging cells is equivalent to performing a distributive expansion of propositional clauses. However, the number of required operations to perform the distributive expansion over the 4 original propositional clauses has required less potentially exponential steps than doing it in the usual manner. The 3×3 merge can even be reduced to a $2+1+1$ merge, by leaving out any combinations that would become impossible.

So, trivially a representation of all possible solutions to a mapped propositional problem can be generated by merging all cells of a satoku matrix into a single cell. If such a cell is possible, trivially the mapped propositional formula is satisfiable.
A good algorithm for merging is to merge only source cells $c_{i_{i}}, c_{e_{e}}$, if the projected resulting cell $s_{x_{x}}$ has less possible atomic states than the sum of possible atomic states of the source cells $c_{i_{i}}, c_{e_{e}}$:

```
Algorithm 6 (merge for satoku matrix reduction).
for each cell row \(c_{i}\) :
    min_pos_cell \(:=(-1,-1)\) for each conflict relationship cell \(c_{i_{j}}, j>i\) :
        cell_pos_count \(:=\left|c_{i_{i}}\right|+\left|c_{j_{j}}\right|\)
        if cell_pos_count \(<\left|\operatorname{Mrg}\left(c_{i_{i}}, c_{j_{j}}\right)\right|\) :
            if min_pos_cell[0] \(<0 \vee\) min_pos_cell[1] > cell_pos_count:
                min_pos_cell \(:=(j\), cell_pos_count \()\)
    if min_pos_cell \([0]>=0\) :
        \(j:=\) min_pos_cell[1]
        \(s_{x_{x}}:=\operatorname{Mrg}\left(c_{i_{i}}, c_{j_{j}}\right)\)
        remove source cells \(c_{i_{i}}, c_{j_{j}}\)
        decrement \(i\)
```

This algorithm is guaranteed to make the satoku matrix smaller.
Merging potentially increases the number of impossible singular states by merging partially disjoint cell rows. At least it may tighten the conflict context by merging subset cell rows with less impossible singular states into superset cell rows with more impossible singular states.

Therefore a point could be made for merging cells when the sum of possible atomic states of the source cells is equal to the projected size of the merge result. However, there are not necessarily any changes in the conflict context and there is no change in the number of 2-state partitions for the source cells and the merged cell, if the number of atomic states in each source cell is even.

8. Indirect Conflicts

By construction, all direct consequences of mutual exclusion between atomic states, as well as all direct consequences of mutual exclusion between atomic states and cells are represented in a consolidated satoku matrix.

For the source of contradictions that leaves only indirect conflicts $r_{x_{y_{g}}}$, which are consequences of merging 2 cell rows $r_{i_{j g}}, r_{e_{f_{g}}}$, when merging state rows $s_{i_{j}}, s_{e_{f}}$. So the first condition for an indirect conflict are 2 combinable state rows $s_{i_{j}}, s_{e_{f}}$ in a consolidated satoku matrix \mathbb{S} :

$$
\operatorname{Con}(\mathbb{S}) \wedge s_{i_{j}}, s_{e_{f}} \in \mathbb{S} \wedge \operatorname{Cmb}\left(s_{i_{j}}, s_{e_{f}}\right)
$$

8.1 Immediate Indirect Conflicts

For immediate indirect conflicts, it is necessary that merging two combinable cell rows $r_{i_{j_{g}}}, r_{e_{f_{g}}}$ results in a conflict cell row $r_{x_{y_{g}}}$. Therefore, one cell row must complement the other, i.e. for each possible CFR $s_{i_{j_{g_{h}}}}$, there must be an impossible CFR $s_{e_{f_{g_{h}}}}$, and for each possible CFR $s_{e_{f_{g_{h}}}}$ there
must be an impossible CFR $s_{i_{j_{g_{h}}}}$:

$$
\begin{aligned}
& \exists r_{i_{j_{g}}} \exists r_{e_{f_{g}}} \forall s_{i_{i_{g_{h}}}} \forall s_{e_{f_{f_{h}}}}: \\
& s_{i_{j_{g_{h}}}} \in r_{i_{j_{g}}} \wedge s_{e_{f_{g_{h}}}} \in r_{e_{f_{g}}} \\
& \wedge\left(\operatorname{Pos}\left(s_{i_{j_{g_{h}}}}\right) \rightarrow \operatorname{Imp}\left(s_{e_{f_{g_{h}}}}\right)\right) \\
& \wedge\left(\operatorname{Pos}\left(s_{e_{f_{g_{h}}}}\right) \rightarrow \operatorname{Imp}\left(s_{i_{j_{g_{h}}}}\right)\right) \\
& \Leftrightarrow \quad \operatorname{Mrg}\left(r_{i_{j_{g}}}, r_{e_{f_{g}}}\right) \xrightarrow[\mathrm{Cfl}]{ }
\end{aligned}
$$

Is is obvious that the immediate result of merging an unrestricted cell row $r_{i_{j_{g}}}$ with another cell row $r_{e_{f_{g}}}$ in a consolidated satoku matrix \mathbb{S} cannot produce a conflict cell row $r_{x_{y_{g}}}$, unless $r_{e_{f_{g}}}$ is already an impossible cell row. However, the consolidation algorithm makes state $s_{e_{f_{e_{f}}}}$ impossible, so it is no longer combinable with any other state:

$$
\begin{array}{rlrl}
& & & \wedge\left\langle\begin{array}{cccc}
1 & 1 & 1 & 1 \\
? & ? & ? & ?
\end{array}\right\rangle r_{i_{j_{g}}} \\
& & \left\langle\begin{array}{llll}
0 & 0 & 0 & 0
\end{array}\right\rangle r_{e_{f_{g}}} \\
\Rightarrow \quad r_{x_{y_{g}}} \\
\Rightarrow & r_{e_{f_{g}}}=\left\langle\begin{array}{llll}
0 & 0 & 0 & 0
\end{array}\right\rangle \\
\Rightarrow & \operatorname{Imp}\left(r_{e_{e_{g}}}\right) \Rightarrow \operatorname{Imp}\left(s_{e_{f}}\right) \Rightarrow \operatorname{Imp}\left(s_{e_{f_{e_{f}}}}\right) \\
\Rightarrow & \forall s_{i_{j_{i_{j}}}}: \neg \operatorname{Cmb}\left(s_{e_{f_{e_{f}}}}, s_{i_{j_{j_{j}}}}\right)
\end{array}
$$

Therefore both cell rows $r_{i_{j_{g}}}, r_{e_{f_{g}}}$ must be restricted in order for a merge operation to result in a conflict cell row $\operatorname{Mrg}\left(r_{i_{j_{g}}}, r_{e_{f_{g}}}\right) \rightarrow \mathrm{Cfl}\left(r_{x_{y_{g}}}\right)$.
Both cell rows $r_{i_{j_{g}}}, r_{e_{f_{g}}}$ must also be undecided.
Proof. If cell row $r_{i_{j_{g}}}$ is bound with required state $s_{i_{j_{g_{h}}}}$, then state $s_{e_{f_{g_{h}}}}$ of cell row $r_{e_{f_{g}}}$ must be impossible for a conflict merge result. Consequently, if CFR $s_{e_{f_{g_{h}}}}$ is impossible, then CFR $s_{g_{h_{e_{f}}}}$ must also be impossible due to commutativity of mutual exclusion (3). Since required CFR $s_{i_{j_{g_{h}}}}$ causes all singular states of state row $s_{g_{h}}$ to be merged into state row $s_{i_{j}}$ during consolidation, CFR $s_{i_{j_{e_{f}}}}$ must also be impossible. But this violates the condition that state rows $s_{i_{j}}, s_{e_{f}}$ must be combinable.

The following example illustrates this. Starting out with bound cell row $r_{0_{1_{2}}}$ in figure 22a, CFR $s_{1_{0_{2}}}$ is set impossible to satisfy the conditions for an immediate indirect conflict in figure 22 b . This also causes CFR $s_{2_{1_{1}}}$ to become impossible. Matrix consolidation causes CFR $s_{0_{1_{1}}}$ and therefore CFR $s_{1_{0_{0}}}$ to become impossible in figure 22 c. Therefore state row $s_{0_{1}}$ and state row $s_{1_{0}}$ are no longer combinable.

P	－－－	－－－－	－
s_{0}	$1 \circ \circ \circ$	－－ーー	－－
$s_{0_{1}}$	$\bigcirc 1 \circ \circ$	－－－	0100
$s_{0_{2}}$	$\bigcirc \circ 1 \circ$	－－－－	－－－－
s_{0}	$\bigcirc \circ \circ 1$	－－－－	－－－－
$s_{1}{ }_{0}$	－－	$1 \circ \circ \circ$	
s_{1}	－ーーー	$\bigcirc 1 \circ \circ$	－－－－
s_{12}	－－ー－	$\bigcirc \circ 10$	－－－－
s_{13}	－ーーー	$\bigcirc \circ \circ 1$	－－－－
$s_{2}{ }_{0}$	－ $0--$	－－－－	$1 \circ \circ \circ$
s_{21}	－		$\bigcirc 100$
s_{2}	－ $0--$		$\bigcirc \circ \bigcirc 1 \circ$
s_{23}	－ $0--$	－ーーー	$\bigcirc \circ \circ 1$

（a）bound cell row $r_{0_{1_{2}}}$

P	－－－－	－－－－	－－－－
$s_{0_{0}}$	$1 \circ \circ \circ$		
$s_{0_{1}}$	$\bigcirc 1 \circ \circ$	－ーー－	0100
$s_{0_{2}}$	$\bigcirc \circ 1 \circ$	－ーーー	－－－－
s_{0}	$\bigcirc \circ \circ 1$	－ーーー	－ーーー
s_{10}	－－－－	$1 \circ \circ \circ$	－ $0--$
$s_{1}{ }_{1}$	－－－－	$\bigcirc 1 \circ \circ$	－－－－
$s_{1}{ }_{2}$		$\bigcirc \circ 1 \circ$	－－－－
s_{13}	－－－－	$\bigcirc \circ \circ 1$	－－－－
s_{20}	－ $0--$	－－－－	$1 \circ \circ \circ$
s_{21}	－－－－	0－－－	$\bigcirc 1 \circ \circ$
$s_{2}{ }_{2}$	－ $0--$		$\bigcirc \circ 1 \circ$
s_{2}	－ $0--$		$\bigcirc \circ \circ 1$

（b）complementary CFR $s_{1_{0_{21}}}$

P	－－－－	－－－－	－
$\begin{aligned} & s_{0_{0}} \\ & s_{0_{1}} \\ & s_{0_{2}} \\ & s_{0_{3}} \end{aligned}$	$\begin{array}{llll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{gathered} ---- \\ 0--- \\ ---- \end{gathered}\right.$	$\left\|\begin{array}{cccc} - & - & - \\ 0 & 1 & 0 & 0 \\ -- & - \end{array}\right\|$
$\begin{aligned} & s_{1_{0}} \\ & s_{1} \\ & s_{1} \\ & s_{13} \end{aligned}$	$\begin{aligned} & -0-- \\ & ---- \\ & ---- \\ & ---- \end{aligned}$	$\begin{array}{lllll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array}$	$\left\|\begin{array}{l} -0-- \\ ---- \\ ---- \end{array}\right\|$
$\begin{aligned} & s_{2_{0}} \\ & s_{2_{1}} \\ & s_{2_{2}} \\ & s_{2_{3}} \end{aligned}$	$\begin{aligned} & -0-- \\ & ---- \\ & -0-- \\ & -0-- \end{aligned}$	$\begin{gathered} -ー-ー \\ 0--- \\ ---- \end{gathered}$	$\begin{array}{llll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array}$

（c） $\operatorname{CFR} s_{0_{1_{1}}} \rightarrow \neg \operatorname{Cmb}\left(s_{0_{1}}, s_{1_{0}}\right)$

Figure 22：Construct complementary cell row $r_{1_{0_{2}}}$ for bound cell row $r_{0_{1_{2}}}$

In a restricted undecided cell row there must be at least 1 impossible state and 2 possible states． Therefore，there is a minimum of 3 states in a restricted undecided cell row．Any 2 restricted undecided 3 －state cell rows $r_{i_{g}}, r_{e_{f_{g}}}$ share at least one common possible state $s_{i_{j_{g_{h}}}}, s_{e_{f_{g_{h}}}}$ ．Making either one state impossible，causes the respective cell row $r_{i_{g}}, r_{e_{f_{g}}}$ to become decided，since it now has 1 possible state and 2 impossible states．Therefore，there cannot be any immediate indirect conflicts in 3 －state cell rows．

At least 4 singular states are required for an immediate indirect conflict in 2 cell rows $r_{i_{j_{g}}}, r_{e_{f_{g}}}$ ， 2 of them are possible， 2 of them are impossible．For each impossible state $s_{i_{j_{h}}}$ in cell row $r_{i_{j_{g}}}$ the corresponding state $s_{e_{f_{g_{h}}}}$ in cell row $r_{e_{f_{g}}}$ is possible．For each impossible state $s_{e_{f_{g_{h}}}}$ in cell row $r_{e_{f_{g}}}$ the corresponding state $s_{i_{j_{g_{h}}}}$ in cell row $r_{i_{j_{g}}}$ is possible．
The example in figure 23 shows that an immediate indirect conflict $\left(r_{0_{0_{2}}}, r_{1_{0_{2}}}\right)$ is not backpropagated $\left(s_{0_{0_{10}}} \leftarrow \mathrm{Imp}\right)$ ，when detected．

P	－－－	－－－－	－－－－	－－－－
$s^{0_{0}}$	$10 \circ \circ$	－－－－	0－0－	
${ }^{s_{0}}{ }_{1}$	－1。○	－－－－	－－－－	0
$s^{0_{2}}$	$\bigcirc \circ 1 \circ$			－
s_{0}	$\bigcirc \circ \circ 1$	－－－－	－－－－	0
${ }^{1_{1}}$	－－－－	$1 \circ \circ \circ$	－0－0	－－－－
$s_{1}{ }_{1}$	－－－－	$\bigcirc 1 \circ \circ$	－－－－	$0--$
$s_{1} 1_{2}$		$\bigcirc \circ 1 \circ$	－－－－	0
${ }^{s_{1}}$		$\bigcirc \circ \circ 1$	－－－－	0
${ }^{s} 2_{0}$	0 －		$1 \circ \circ \circ$	0
$s_{2}{ }_{1}$	－－－－	$0---$	$\bigcirc 1 \circ \circ$	－－－－
$s_{2}{ }_{2}$	0－－－		○○1○	0－－－
$s_{2}{ }_{3}$		0	$\bigcirc \circ \circ 1$	
${ }^{s} 3_{0}$	1000	－000	0－0－	$100 \circ$
${ }^{s_{3}}$	－－－－			$\bigcirc 1 \circ \circ$
${ }^{s_{3}}$				$\bigcirc \circ 1 \circ$
${ }^{s_{3}}$	－－－－			$\bigcirc \circ \circ 1$

（a）Partially consolidated

P	－－－－	－－－－	－－－－	0－－－
$\begin{aligned} & s_{0_{0}} \\ & s_{0}{ }_{0} \\ & s_{0_{2}} \\ & s_{0_{3}} \\ & \hline \end{aligned}$	$\begin{array}{llll} \hline 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array}$		$\begin{aligned} & 0-0- \\ & ---- \\ & ---- \end{aligned}$	$\left\|\begin{array}{l} 0--- \\ 0--- \\ 0--- \\ 0--- \end{array}\right\|$
$\begin{aligned} & s_{10} \\ & s_{1} \\ & s_{1} \\ & s_{1} \\ & s_{1} \end{aligned}$		$\begin{array}{lllll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{aligned} & -0-0 \\ & ---- \\ & ---- \end{aligned}\right.$	$\begin{aligned} & 0--- \\ & 0--- \\ & 0--- \\ & 0--- \end{aligned}$
$\begin{aligned} & s_{2_{0}} \\ & s_{2}{ }_{1} \\ & s_{2}{ }_{2} \\ & s_{2_{3}} \\ & \hline \end{aligned}$	$0---$ ---- $0---$	$\begin{gathered} \hline---- \\ 0--- \\ ---- \\ 0--- \end{gathered}$	$\begin{array}{llll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & 0 \\ \circ & \circ & \circ & 1 \end{array}$	$\begin{array}{\|l\|} \hline 0--- \\ 0--- \\ 0--- \\ 0--- \end{array}$
$\begin{aligned} & s_{3} 3_{0} \\ & s_{3} \\ & s_{3} \\ & s_{3} \\ & s_{3} \end{aligned}$	0000	0000	$\begin{aligned} & 0000 \\ & ---- \end{aligned}$	○○○○ $\circ 1 \circ \circ$ －○ 1 ○ ○○○ 1

（b）consolidated satoku matrix \mathbb{S}

Figure 23：Immediate indirect conflict

Matrix consolidation is therefore extended with an algorithm to detect immediate indirect conflicts．
Algorithm 7 （detect immediate indirect conflicts）．
for each state row $s_{i_{j}}$:
for each cell row $r_{i_{j_{g}}}$ in state row $s_{i_{j}}$:

$$
\begin{aligned}
& \text { if }\left|r_{i_{i_{g}}}\right|>=4 \wedge \operatorname{Rst}\left(r_{i_{j_{g}}}\right) \wedge \operatorname{Und}\left(r_{i_{j_{g}}}\right): \\
& \quad \text { for each state row } s_{e_{f}}, e>i: \\
& \quad \text { if } \operatorname{Rst}\left(r_{e_{f_{g}}}\right) \wedge \operatorname{Und}\left(r_{e_{f_{g}}}\right) \wedge\left(\operatorname{Mrg}\left(r_{i_{j_{g}}}, r_{e_{f_{g}}}\right) \rightarrow \mathrm{CfI}\right): \\
& \quad s_{i_{j_{e_{f}}}} \leftarrow \operatorname{Imp}
\end{aligned}
$$

8.2 Hidden Indirect Conflicts

For a hidden indirect conflict in a consolidated satoku matrix \mathbb{S}, it is necessary, that merging 2 combinable state rows $s_{i_{j}}, s_{e_{f}}, i \neq e$ with undecided restricted cell rows $r_{i_{j_{g}}}, r_{e_{f_{g}}}$ results in a series of 1 or more bound cell rows $r_{p_{q_{r}}}$ triggering additional merges and finally revealing a conflict cell row $r_{x_{y_{g}}}$ during consolidation of the satoku matrix \mathbb{S}.
This is demonstrated in figures 24 and 25:

P	---	---	---	---	---	
$\begin{aligned} & s_{0_{0}} \\ & s_{0_{1}} \\ & s_{0} \\ & s_{0} \end{aligned}$			$\begin{aligned} & --0 \\ & --- \\ & --- \end{aligned}$	$\left\lvert\, \begin{aligned} & --0 \\ & --- \\ & --- \end{aligned}\right.$	$\begin{aligned} & \hline-0- \\ & 0-- \\ & 0-- \end{aligned}$	${ }^{s_{0}}{ }_{0}$
$\begin{aligned} & s_{1} 1_{0} \\ & s_{1} \\ & s_{1} \\ & s_{1} \\ & \hline \end{aligned}$			$\begin{aligned} & -0- \\ & --- \\ & --- \end{aligned}$	$\begin{aligned} & -0- \\ & --- \\ & --- \end{aligned}$	$\begin{aligned} & --0 \\ & 0-- \\ & 0-- \end{aligned}$	${ }^{s} 1_{0_{g}}$
$\begin{aligned} & s_{2}{ }_{2} \\ & s_{21} \\ & s_{2} \\ & \hline \end{aligned}$			$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{gathered} 0-- \\ --- \\ --- \end{gathered}$		
$\begin{aligned} & s_{3_{0}} \\ & s_{3} \\ & s_{1} \\ & s_{3} \\ & \hline \end{aligned}$	$\begin{aligned} & --- \\ & --- \\ & 0-- \end{aligned}$	--- $0--$ ---	$\begin{aligned} & 0-- \\ & --- \\ & --- \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	--- --- ---	
$\begin{aligned} & s_{4_{0}} \\ & s_{4} \\ & s_{1} \\ & s_{4} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-00 \\ & 0-- \end{aligned}$	$\begin{aligned} & -00 \\ & --- \\ & 0-- \end{aligned}$	$\begin{aligned} & --- \\ & --- \end{aligned}$	$\begin{aligned} & --- \\ & --- \end{aligned}$	$\begin{array}{lll} 1 & \circ & 0 \\ \circ & 1 & 0 \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & \quad s_{0_{0}} \wedge s_{1_{0}} \\ & \neg s_{0_{0}} \\ & \neg s_{1} \\ & \hline \end{aligned}$

(a) Request merge of $s_{0_{0}}, s_{1}$

P	---	---	---	---	---	
$\begin{aligned} & { }^{s_{0}}{ }_{0} \\ & s_{0_{1}} \\ & s_{0_{2}} \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$		$\begin{aligned} & --0 \\ & --- \\ & --- \end{aligned}$	$\begin{aligned} & --0 \\ & --- \\ & --- \end{aligned}$		${ }^{s} \mathrm{O}_{0}{ }_{g}$
$\begin{aligned} & s_{1_{0}} \\ & s_{1} \\ & s_{1} \end{aligned}$		$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{aligned} & -0- \\ & --- \\ & --- \end{aligned}\right.$	$\begin{aligned} & -0- \\ & --- \\ & --- \end{aligned}$	$\begin{aligned} & \hline--0 \\ & 0-- \\ & 0-- \end{aligned}$	${ }^{s} 1_{0}{ }_{g}$
$\begin{aligned} & s_{2_{0}} \\ & s_{2} \\ & s_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline--- \\ & --- \\ & 0-- \end{aligned}$	$\begin{array}{\|c} \hline--- \\ 0-- \\ --- \end{array}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left.\begin{array}{\|c\|} \hline 0-- \\ --- \\ --- \end{array} \right\rvert\,$	$\begin{aligned} & \hline--- \\ & 0-- \\ & 0-- \end{aligned}$	
$\begin{aligned} & s_{3} 3_{0} \\ & s_{3} \\ & s_{1} \\ & s_{2} \end{aligned}$		0 -- - - -	$\begin{aligned} & 0-- \\ & --- \\ & --- \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & --- \\ & 0-- \\ & 0-- \end{aligned}$	
$\begin{aligned} & s_{4_{0}} \\ & s_{4} \\ & s_{4} \end{aligned}$	$\begin{array}{lll} \hline 100 \\ 0 & - & - \end{array}$	$\begin{array}{lll} 1 & 0 & 0 \\ -- & - \\ 0 & -- \end{array}$	$\begin{aligned} & -00 \\ & --- \end{aligned}$	$\begin{aligned} & -00 \\ & ---\quad \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & \quad s_{0_{0}} \wedge s_{1_{0}} \\ & \neg s_{0} \\ & \neg s_{0} \\ & \neg 1_{0} \end{aligned}$

(b) Satisfy required $s_{4_{0_{0}}}, s_{4_{0_{1}}}$

Figure 24: Hidden indirect conflict stage 1

P	---	---	---	-	--	
$\begin{aligned} & s_{0} 0_{0} \\ & s_{0_{1}} \\ & s_{0} \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$		$\begin{aligned} & --0 \\ & --- \\ & --- \end{aligned}$	$\begin{aligned} & --0 \\ & --- \\ & --- \end{aligned}$	$\begin{aligned} & -0- \\ & 0-- \\ & 0-- \end{aligned}$	${ }^{s} \mathrm{O}_{0}{ }_{g}$
$\begin{aligned} & s_{1} 1_{0} \\ & s_{1}{ }_{1} \\ & s_{1} \end{aligned}$		$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$-0-$ --- ---	$\begin{aligned} & -0- \\ & --- \\ & --- \end{aligned}$	$\begin{aligned} & --0 \\ & 0-- \\ & 0-- \end{aligned}$	${ }^{s} 1_{0}{ }^{\text {g }}$
$\begin{aligned} & s_{2}{ }_{0} \\ & s_{2} \\ & s_{1} \\ & s_{2} \end{aligned}$		$0--$ $---$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & 0-- \\ & --- \\ & - \end{aligned}$	$\begin{aligned} & --- \\ & 0-- \\ & 0-- \end{aligned}$	
$\begin{aligned} & s_{3}{ }_{3} \\ & s_{3} \\ & s_{1} \\ & s_{3} \end{aligned}$	$\begin{aligned} & --- \\ & --- \\ & 0-- \end{aligned}$	$0--$	$\begin{gathered} 0-- \\ --- \\ --- \end{gathered}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$	
$\begin{aligned} & s_{4} 4_{0} \\ & s_{4} \\ & s_{4} \\ & s_{2} \end{aligned}$	$\begin{aligned} & 100 \\ & 0-- \end{aligned}$	$\begin{aligned} & 100 \\ & ---- \\ & 0-- \end{aligned}$	100	000	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & \quad s_{0_{0}} \wedge s_{1_{0}} \\ & \neg s_{0_{0}} \\ & \neg s_{1_{0}} \end{aligned}$

(a) Satisfy $\operatorname{Req}\left(s_{4_{0_{2}}}\right) \rightarrow \operatorname{Imp}\left(s_{4_{0_{3}}}\right)$

P	---	---	---	---	0--	
$\begin{aligned} & { }^{{ }^{{ }_{0}^{0}} 0} \\ & { }^{s_{0}} \\ & s_{0} \end{aligned}$	$\begin{array}{lll} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{aligned} & 0-- \\ & --- \\ & --- \end{aligned}\right.$	$\begin{aligned} & --0 \\ & --- \end{aligned}$	$\left\lvert\, \begin{aligned} & --0 \\ & --- \\ & --- \end{aligned}\right.$	$\begin{array}{\|lll} \hline 0 & 0 & 1 \\ 0 & - & - \\ 0 & - & - \end{array}$	${ }^{s} \mathrm{O}_{\mathrm{O}}{ }^{\text {d }}$
$\begin{aligned} & s_{1} 1_{0} \\ & s_{1} \\ & s_{1} \end{aligned}$	$\begin{aligned} & 0-- \\ & --- \\ & --- \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & -0- \\ & --- \\ & --- \end{aligned}$	$-0-$ --- ---	$\begin{aligned} & 010 \\ & 0-- \\ & 0-- \end{aligned}$	${ }^{s} 1_{0}$
$\begin{aligned} & s_{2_{0}} \\ & s_{2} \\ & s_{2} \\ & s_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & --- \\ & --- \\ & 0-- \end{aligned}$	$0--$ $---$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{\|c\|} \hline 0-- \\ --- \\ --- \end{array}$	$\begin{array}{\|l} \hline 0-- \\ 0-- \\ 0-- \end{array}$	
$\begin{aligned} & { }^{s_{3}}{ }_{0} \\ & { }^{s_{3}} \\ & s_{3} \\ & \hline \end{aligned}$	--- --- $0--$	$0--$		$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}\right.$	
$\begin{aligned} & s_{4_{0}} \\ & s_{4} \\ & s_{4} \\ & s_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 000 \\ & 0 \end{aligned}$	$\begin{aligned} & 000 \\ & --- \\ & 0-- \end{aligned}$	$\begin{gathered} 000 \\ --- \end{gathered}$	$\begin{array}{\|c} \hline 000 \\ --- \\ --- \end{array}$	$\begin{array}{lll} \circ & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & \quad s_{0_{0}} \wedge s_{1_{0}} \\ & \neg s_{0_{0}} \\ & \neg s_{1_{0}} \end{aligned}$

(b) consolidated satoku matrix

Figure 25: Hidden indirect conflict stage 2

It is obvious, that the result of merging any cell row $r_{i_{j_{g}}}$ with an unrestricted cell row $r_{e_{f_{g}}}$ produces the same CFR states as given in $r_{i_{j_{g}}}$. So, no new merges are triggered in this case.
It is further obvious, that merging any cell row $r_{i_{j_{g}}}$ with a bound cell row $r_{e_{f_{g}}}$ and required CFR $s_{e_{f_{g_{h}}}}$ can only produce a bound result cell row $r_{x_{y_{g}}}$ with required CFR $s_{x_{y_{g_{h}}}}$. However, the required state row $s_{g_{h}}$ has already been merged into state row $s_{e_{f}}$ during a previous consolidation of the satoku matrix \mathbb{S} and a new merge of state row $s_{g_{h}}$ cannot reveal anything new.
Therefore cell rows $r_{i_{g}}, r_{e_{f_{g}}}$ must both be restricted and undecided.
As shown previously, this implies that cell rows $r_{i_{j_{g}}}, r_{e_{f_{g}}}$ must have a minimum number of 3 singular states, in order for them to produce bound cell rows as merge results which in turn trigger a new merge.

8.3 2-State Cells

Theorem 1. A consolidated satoku matrix \mathbb{S}_{c} consisting of cells c_{i} with a maximum number of 2 states $s_{i_{j}}, 0<=j<=1$, is either found impossible or it is provable.

Sections 8.1 and 8.2 already show that there cannot be any indirect conflicts in a consolidated satoku matrix with a maximum cell size of 2 . However, to make it perfectly clear, it is summarized here.

The 4 possible cell row states for 2 -state cells are:

\langle	0	0	\rangle	impossible	decided
$\langle 0$	1	\rangle	restricted possible	decided	restricted
$\langle 1$	0	\rangle	possible	decided	restricted
$\langle 1$	1	\rangle	possible	undecided	unrestricted

While states $\langle 01\rangle$ and $\langle 10\rangle$ are restricted, they are not undecided as required for an indirect conflict. Since there are no other restricted states available it is not possible to construct an indirect conflict in a consolidated satoku matrix consisting of 2-state cells. Without indirect conflicts it is also not possible to construct an indirect contradiction. Therefore, if a consolidated satoku matrix consisting of 2-state cells is possible, nothing else needs to be shown for provability.

While an indirect conflict can be constructed in an unconsolidated 2 -state satoku matrix (see CFR states $r_{0_{0_{2}}}$ and $r_{1_{0_{2}}}$ in figure 26a), consolidation always resolves these conditions for 2 -state cells. E.g., in figure 26 b , satisfying required state $s_{0_{0_{2_{1}}}}$ already leaves states $s_{0_{0_{0}}}$ and $s_{1_{1_{1}}}$ mutually exclusive in cell row $r_{0_{0_{1}}}$.

P	--	--	--	
$s_{0_{0}}$	$1 \circ$	--	$0-$	$r_{0_{0_{2}}}$
$s_{0_{1}}$	$\circ 1$	--	--	
$s_{1_{0}}$	--	$1 \circ$	-0	$r_{1_{0_{2}}}$
$s_{1_{1}}$	--	$\circ 1$	--	
$s_{2_{0}}$	$0-$	--	$1 \circ$	
$s_{2_{1}}$	--	$0-$	\circ	1

(a) Indirect conflict in $r_{0_{0_{2}}}, r_{1_{0_{2}}}$
$\left.\begin{array}{l|l|l|l|l|l}\hline \mathrm{P} & -- & -- & -- & \\ \hline \hline s_{0_{0}} & 1 & \circ & 0 & 1 & 0\end{array}\right] \mid r_{0_{0_{1}}}$.
(b) $\operatorname{Req}\left(s_{0_{0_{2_{1}}}}\right) \rightarrow \operatorname{Mutex}\left(s_{0_{0_{0_{0}}}}, s_{1_{1_{1_{1}}}}\right)$

Figure 26: Indirect conflict in unconsolidated 2-state satoku matrix

8.4 Refined Provability

As shown, the definition of provability can be extended in the following manner.
A satoku matrix is provable, if there exists a sequence of successive decisions according to the transformation rules that decides the satoku matrix and does not result in a contradiction. This definition of provability is the closest analog to boolean satisfiability.

If all cell rows $r_{i_{j g}}$ of a state row $s_{i_{j}}$ are bound in a consolidated satoku matrix \mathbb{S}, the corresponding macro state cell $c_{m_{i_{i}}}$ can be decided by forcing state $s_{i_{j_{i}}}$ to become the required state for $c_{m_{i_{i}}}$.

State row $s_{i_{j}}$ is an inter-cell superset for each bound cell row $r_{i_{j_{g}}}$. All impossible states of state rows $s_{g_{h}}$ required by cell rows $r_{i_{j g}}$ are therefore already present in state row $s_{i_{j}}$, so no combination of state rows $s_{g_{h}}$ can produce a conflict, as previously shown. Thus consolidation reduces the satoku matrix \mathbb{S} to the possible decided state.

It is therefore not necessary to actually decide a satoku matrix in order to deduce provability. Showing that state row $s_{i_{j}}$ exists in a consolidated satoku matrix \mathbb{S}, is sufficient.

A consolidated satoku matrix \mathbb{S} is strictly provable, if successive arbitrary decisions of undecided cells according to the transformation rules cannot result in a contradiction. There is no equivalent for this definition in propositional logic, since the special cases where it is obvious are primarily trivial. Whereas in structural logic strict provability is the standard case.
It follows trivially, that a consolidated satoku matrix \mathbb{S} is strictly provable, if it is possible and all cell rows $r_{i_{j_{g}}}$ are either unrestricted or decided. In this case, no indirect conflicts are possible, since they require at least 2 combinable undecided restricted cell rows $r_{i_{j_{g}}}, r_{e_{f_{g}}}$.
Specifically, any consolidated satoku matrix \mathbb{S}, which consists exclusively of 1 -state and 2 -state cells is strictly provable. It is therefore sufficient to reduce a satoku matrix \mathbb{S} to cells with a maximum of 2 states to determine strict provability.
If a consolidated satoku matrix \mathbb{S} has a state row $s_{i_{j}}$ whose cell rows $r_{i_{j}}$ only have a maximum of 2 possible states $s_{i_{j_{x}}}, s_{i_{g_{y}}}$, the corresponding state $s_{i_{j_{j}}}$ can be forced global (as the required state of macro cell state $c_{m_{i_{i}}}$). After consolidation, satoku matrix \mathbb{S} is either a contradiction Ctr or it is strictly provable.
According to this definiton, the satoku matrix reduced to cell c_{55} in figure 21 is strictly provable since all states are decided and no further arbitrary decision of undecided cells can be made.

9. Advanced Satoku Matrix Transformations

There are some satoku matrix transformations, which are easier to prove with strict provability and especially the fact that any satoku matrix consisting of 2-state cells is strictly provable (see section 8.3).

9.1 2-State Splitting

In a consolidated satoku matrix \mathbb{S}, any possible sub-matrix of cells consisting of a maximum of 2 possible singular states is strictly provable. It can therefore be separated from satoku matrix \mathbb{S} as 2 -state sub-matrix \mathbb{S}_{2} without affecting provability, leaving the core sub-matrix \mathbb{C}, that still needs to be proved.

Proof. It is obvious, that all 1 -state cells $c_{m_{i_{i}}}$ are decided. If a 1-state cell is impossible $c_{m_{i_{i}}}$, the satoku matrix \mathbb{S} becomes a contradiction (Ctr). If a 1 -state cell $c_{m_{i_{i}}}$ is possible (see figure 28a, cell $c_{m_{4_{4}}}$), state $s_{i_{0_{i_{0}}}}$ is required by all other states $s_{e_{e_{e_{f}}}}, e \neq i$. Consolidaton therefore propagates all impossible singular states $s_{i_{0_{g_{h}}}}, g \neq i$ to all other states $s_{e_{f_{e_{f}}}}, e \neq i$. In a consolidated satoku matrix \mathbb{S}, all possible 1 -state cells $c_{m_{i_{i}}}$ can therefore be removed without affecting provability.

P	---	---	---	---	--	--	--	-	-
$\begin{aligned} & s_{0_{0}} \\ & s_{0_{1}} \\ & s_{0_{2}} \\ & \hline \end{aligned}$	$\begin{array}{lll} 1 & \circ & 0 \\ \circ & 1 & 0 \\ \circ & \circ & 1 \end{array}$	$\mid---$	$---$		$\begin{aligned} & \hline 0- \\ & -0 \\ & -0 \end{aligned}$	$\left\|\begin{array}{c} -0 \\ -0 \\ 0- \end{array}\right\|$	$\begin{aligned} & -- \\ & -- \\ & -0 \end{aligned}$	$\begin{array}{\|l\|} \hline 0- \\ -- \\ -- \\ \hline \end{array}$	---
$\begin{aligned} & s_{1_{0}} \\ & s_{1} \\ & s_{1_{2}} \\ & \hline \end{aligned}$	$\begin{aligned} & --- \\ & --- \end{aligned}$	$\begin{array}{llll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left\|\begin{array}{l} --- \\ --- \end{array}\right\|$	$\left\|\begin{array}{l} --- \\ --- \end{array}\right\|$	$\begin{aligned} & -0 \\ & -- \\ & -- \end{aligned}$	-- $0-$ --	---	$\left\|\begin{array}{l} -- \\ -- \\ -0 \end{array}\right\|$	--
$\begin{aligned} & s_{2_{0}} \\ & s_{2_{1}} \\ & s_{2_{2}} \\ & \hline \end{aligned}$	---		$\begin{array}{llll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{aligned} & --- \\ & --- \\ & --- \end{aligned}\right.$	$\begin{aligned} & -- \\ & -- \end{aligned}$	$\begin{aligned} & \hline-0 \\ & -- \\ & -- \end{aligned}$	-- $0-$ --	$\begin{aligned} & -- \\ & -- \\ & 0- \end{aligned}$	$\begin{aligned} & -- \\ & -- \\ & \hline \end{aligned}$
$\begin{aligned} & s_{3} \\ & s_{3} \\ & s_{1} \\ & s_{3} \\ & \hline \end{aligned}$	----	\|-	$\begin{array}{\|l\|} \hline--- \\ --- \\ \hline \end{array}$	$\begin{array}{lll} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	-- -- --	---	---	-	---
$\begin{aligned} & s_{4_{0}} \\ & s_{4_{1}} \\ & \hline \end{aligned}$	$\begin{array}{c\|} \hline \hline 0-0 \\ -0 \end{array}$	----	---	---	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	---	---		---
$\begin{aligned} & s_{5_{0}} \\ & s_{5_{1}} \\ & \hline \end{aligned}$	$\begin{array}{cc} --0 \\ 0 & 0 \end{array}$	-0-	$\begin{aligned} & --- \\ & 0-- \end{aligned}$	-	--	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	--	-	--
$\begin{aligned} & s_{6_{0}} \\ & s_{6_{1}} \\ & \hline \end{aligned}$	---	----	-0-	---	---	---	$\begin{array}{ll} \hline 1 & \circ \\ \circ & 1 \end{array}$	---	--
$\begin{aligned} & s_{7_{0}} \\ & s_{7_{1}} \\ & \hline \end{aligned}$	$0--$ ---	---	--0	---	--	---	\|--	$\begin{array}{ll} \hline 1 & \circ \\ \circ & 1 \end{array}$	--
$\begin{aligned} & s_{8_{0}} \\ & s_{8_{1}} \\ & \hline \end{aligned}$	---	---	---	----	--	---	--	-	$\begin{array}{\|ll\|} \hline 1 & \circ \\ \circ & 1 \end{array}$

(a) unconsolidated satoku matrix \mathbb{S}

P	$0--$	---		-	10	--	--	--	-
s_{0}	$\bigcirc \circ \circ$	000	000	000	00	00	00	00	00
$s_{0_{1}}$	- 10	-0-	---	---	10	10	-		
$s_{0_{2}}$	$\bigcirc \circ 1$	--0	001	---	10	01	10	01	--
s_{10}	0--	$1 \circ \circ$	---	---	10	--	--	-	--
$s_{1} 1_{1}$	001	-1 0	001	--	10	01	10	01	--
s_{12}	010	$\bigcirc \circ 1$	--0	---	10	10	--	10	--
s_{2}	010	-0-	$1 \circ \circ$	--	10	10	--	--	--
$s_{2}{ }_{1}$	010	-0-	- $1 \circ$		10	10	01	--	
$s_{2}{ }_{2}$	0	--0	$\bigcirc \circ 1$		10			01	--
s_{30}	0-	---		$1 \circ \circ$	10	--	--		
s_{3}	0 --			- 10	10	--	--		--
s_{32}	-			$\bigcirc \circ 1$	10	--			
s_{40}	0--	---	---	---	1 。	--	--	--	-
$s_{4_{1}}$	000	000	000	000	$\bigcirc \circ$	00	00	00	00
s_{50}	010	-0-	---	--	10	$1 \circ$	--	--	
$s_{5_{1}}$	001	--0	001	--	10	-1	10	01	
$s_{6}{ }_{0}$	$0--$	---	-0-	-	10	-	$1 \circ$	--	--
$s_{6}{ }_{1}$	010	-0-		--	10	10	- 1		
${ }^{s_{7}}$	010	-0-	--0	--	10	10	--	$1 \circ$	--
s_{7}	0--	--0			10		--	- 1	
s_{80}	0 --	---	---	---	10	-	--	--	$1 \circ$
s_{81}	0--	---	---	---	10	--	--	--	$\bigcirc 1$

(b) consolidated satoku matrix \mathbb{S}

Figure 27: 2-State splitting stage 1

A CFR cell row $r_{i_{j g}}$ for a state row $s_{i_{j}}, c_{i_{i}} \in \mathbb{C}$, and a cell $c_{g_{g}}, c_{g_{g}} \in \mathbb{S}_{2}$, consists of 2 CFR states $s_{i_{j_{g_{h}}}}$. So $r_{i_{j_{g}}}$ is either

- impossible, which eliminates state row $s_{i_{j}}$ entirely from satoku matrix \mathbb{S} reducing cell $c_{m_{i_{i}}}$ to a 1-state cell (see figure 27 b, state row $s_{4_{1}}$, cell row $r_{4_{14}}$, cell $c_{m_{4_{4}}}$) (see figure 28a, state row $s_{4_{1}}$, cell $c_{m_{4}}$), or
- unrestricted, which allows any of the CFR states $s_{i_{j_{g_{h}}}}$ without restrictions, or
- restricted and possible.

If cell row $r_{i_{j_{g}}}$ is restricted and possible it is also necessarily bound with required state $s_{i_{j_{g_{h}}}}$. Therefore consolidation merges all impossible singular states from state row $s_{g_{h}}$ into state row $s_{i_{j}}$. In a consolidated satoku matrix \mathbb{S}, state row $s_{g_{h}}$ is then no longer necessary to decide core sub-matrix \mathbb{C}.
If all cell rows $r_{i_{j_{g}}}, c_{i_{i}} \in \mathbb{C} \wedge c_{g_{g}} \in \mathbb{S}_{2}$, are unrestricted, all CFR states $s_{i_{j_{g_{h}}}}$ are possible and therefore the corresponding mirror states $s_{g_{h_{i_{j}}}}$ must also be possible (see figure 28 b , cell rows $r_{i_{j_{6}}}, i=0 \ldots 2$ and cell rows $r_{6_{j_{g}}}, j=0 \ldots 1, j=0 \ldots 2$). This means, that cell $c_{g_{g}}$ is independent of any cell $c_{i_{i}}$ in core sub-matrix \mathbb{C} and therfore, cell $c_{g_{g}}$ can be removed without affecting provability of core sub-matrix \mathbb{C}.
$\left.\begin{array}{c|c|c|c|c||c|c|c|c|c|c|}\hline \mathrm{P} & -- & --- & ---- & --- & 1 & --- & -- & -- & -- & -- \\ \hline \hline s_{0_{0}} & 1 & 0 & - & 0 & - & ---- & --- & 1 & 1 & 1\end{array}\right)$
(a) impossible state rows removed

P	---			--	--			
$\begin{aligned} & s_{0_{0}} \\ & s_{0_{1}} \\ & s_{0_{2}} \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{\|ll} -- & - \\ 0 & 0 \\ - & 1 \\ - & 0 \end{array}$	--- --- ---	$\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{\|c} \hline-- \\ 10 \\ -\quad \end{array}$	$\left\|\begin{array}{ll} - & - \\ 0 & 1 \\ 1 & 0 \end{array}\right\|$		- 0 1 1 1
$\begin{aligned} & s_{1_{0}} \\ & s_{1} \\ & s_{12} \end{aligned}$	$\begin{aligned} & -0- \\ & -0- \\ & --0 \end{aligned}$	$\begin{array}{llll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	----	$\begin{array}{ll} \hline 10 \\ 10 \end{array}$	$\begin{array}{\|c} -- \\ 0 \\ 1 \end{array}$	$\left.\begin{aligned} & -- \\ & -- \\ & 0 \end{aligned} \right\rvert\,$		$\begin{array}{\|ll\|} \hline 1 & 0 \\ 10 \end{array}$
$\begin{aligned} & s_{2}{ }_{0} \\ & s_{2} \\ & s_{2} \end{aligned}$			$\begin{array}{llll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$		$\begin{aligned} & -- \\ & -- \\ & -- \end{aligned}$	$-$		
$\begin{aligned} & s_{3_{0}} \\ & s_{3} \end{aligned}$	$\begin{aligned} & -0- \\ & --0 \end{aligned}$	--- 01	---	$\begin{array}{ll} \hline 1 \circ \\ \circ & 1 \end{array}$	$\left.\begin{array}{\|c} -- \\ 10 \end{array} \right\rvert\,$	$\left.\begin{aligned} & -- \\ & 0 \end{aligned} \right\rvert\,$		$\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}$
$\begin{aligned} & s_{4_{0}} \\ & s_{4_{1}} \end{aligned}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$			$-\overline{10}$	$\begin{array}{\|l\|l\|} \hline 1 \circ \\ \circ & 1 \end{array}$			$\begin{array}{\|c} -- \\ 10 \end{array}$
$\begin{aligned} & s_{5_{0}} \\ & s_{5_{1}} \end{aligned}$	$-0-$ --0	--		10	---	$\begin{array}{\|ll\|} \hline 1 & \circ \\ \circ & 1 \end{array}$	--	10
$\begin{aligned} & s_{6_{0}} \\ & s_{6_{1}} \end{aligned}$				--	---	---	$\begin{array}{\|ll\|} \hline 1 & \circ \\ \circ & 1 \end{array}$	--
$\begin{aligned} & s_{7_{0}} \\ & s_{7_{1}} \end{aligned}$	$\begin{aligned} & -0- \\ & --0 \end{aligned}$	--- 0	----	$\begin{array}{ll} 10 \\ 0 & 1 \end{array}$	$\begin{gathered} -- \\ 10 \end{gathered}$	$\left.\begin{array}{\|l\|} \hline- \\ \hline 0 \end{array} \right\rvert\,$	-	$\begin{array}{lll} 1 & \circ \\ \circ & 1 \end{array}$

(b) 1-state cell removed, re-ordered

Figure 28: 2-State splitting stage 2

If the core sub-matrix \mathbb{C} has been proved, decided state rows can be substituted into the unsplit satoku matrix \mathbb{S} to determine the effect on the states in 2 -state sub-matrix \mathbb{S}_{2}.
It is also immaterial, whether the 2 -state sub-matrix \mathbb{S}_{2} is actually removed or not. The 2 intersections between core sub-matrix \mathbb{C} and 2 -state cell sub-matrix are necessarily irrelevant to any argument developed in the core sub-matrix \mathbb{C}.

9.2 Distractor Reduction

State rows $s_{i_{j}}, s_{i_{f}}, j \neq f$, within the same matrix cell row c_{i} are mutually exclusive by definition. Lifting the restriction that the state rows $s_{i_{j}}, s_{i_{f}}$ must be combinable, allows to define the superset relation between intra-cell state rows $s_{i_{j}}, s_{i_{f}}$ as follows.
A state row $s_{i_{j}}$ is said to be a superset of state row $s_{i_{f}}, j \neq f$ in a consolidated satoku matrix \mathbb{S} when all impossible CFR states $s_{i_{f_{g_{h}}}}$ of undecided cell rows $r_{i_{f_{g}}}$ also appear as impossible CFR states $s_{i_{j_{g_{h}}}}$ in state row $s_{i_{j}}$:

$$
\begin{aligned}
& \operatorname{Con}(\mathbb{S}) \wedge s_{i_{j_{i_{j}}}} \in c_{i_{i}} \wedge s_{i_{f_{i_{f}}}} \in c_{i_{i}} \wedge j \neq f \wedge \\
& \forall r_{i_{f_{g}}} \forall s_{i_{f_{g_{h}}}}: \operatorname{Und}\left(r_{i_{f_{g}}}\right) \wedge \operatorname{Imp}\left(s_{i_{f_{g_{h}}}}\right) \rightarrow \operatorname{Imp}\left(s_{i_{j_{g_{h}}}}\right) \\
\Leftrightarrow \quad & s_{i_{j}} \supseteq s_{i_{f}}
\end{aligned}
$$

P								
$\begin{aligned} & s_{0_{0}} \\ & s_{0_{1}} \\ & s_{0_{2}} \end{aligned}$	$\begin{array}{llll} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{aligned} & 001 \\ &- 0 \end{aligned}\right.$	--- --- ---	$\begin{aligned} & -\overline{-} \\ & 0 \\ & 1 \\ & 10 \end{aligned}$	$\left\|\begin{array}{c} -- \\ 1 \\ - \\ - \end{array}\right\|$	$\left\|\begin{array}{ll} - & - \\ 0 & 1 \\ 1 & 0 \end{array}\right\|$	-- -- --	$\left.\begin{array}{\|ll\|} \hline- & - \\ 0 & 1 \\ 1 & 0 \end{array} \right\rvert\,$
$\begin{aligned} & s_{1_{0}} \\ & s_{1} \\ & s_{1_{2}} \end{aligned}$	$\begin{aligned} & -0- \\ & -0- \\ & --0 \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$		$\begin{array}{ll} 10 \\ 10 \\ 10 \end{array}$	$\left\|\begin{array}{c} - \\ 0 \\ - \\ - \end{array}\right\|$	$\left\|\begin{array}{l} -- \\ -- \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} -- \\ -- \\ -- \end{array}\right\|$	$\begin{array}{\|ll\|} \hline 1 & 0 \\ 1 & 0 \end{array}$
$\begin{aligned} & s_{2_{0}} \\ & s_{2} \\ & s_{2} \end{aligned}$			$\left.\begin{array}{\|lll\|} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array} \right\rvert\,$		--		--	--
$\begin{aligned} & s_{3_{0}} \\ & s_{3_{1}} \end{aligned}$	$\begin{aligned} & -0- \\ & --0 \end{aligned}$			$\begin{array}{ll} \hline 1 \circ \\ \circ & 1 \end{array}$	$\left\|\begin{array}{c} -\overline{1} \\ 1 \end{array}\right\|$	01		$\begin{array}{\|ll\|} \hline 1 & 0 \\ 0 & 1 \end{array}$
$\begin{aligned} & s_{4_{0}} \\ & s_{4_{1}} \\ & \hline \end{aligned}$	---			$\overline{-} \overline{1}$	$\left.\begin{array}{\|ll\|} \hline 1 & \circ \\ \circ & 1 \end{array} \right\rvert\,$	--		$\left\lvert\, \begin{gathered} -- \\ 10 \end{gathered}\right.$
$\begin{aligned} & s_{5_{0}} \\ & s_{5_{1}} \end{aligned}$	$\begin{aligned} & -0- \\ & --0 \end{aligned}$	-		10	-	$\begin{array}{ll} \hline 1 & \circ \\ \circ & 1 \end{array}$		10
$\begin{aligned} & s_{6_{0}} \\ & s_{6_{1}} \end{aligned}$	-				---	---	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	---
$\begin{aligned} & s_{7_{0}} \\ & s_{7_{1}} \\ & \hline \end{aligned}$	$\begin{aligned} & -0- \\ & --0 \end{aligned}$	$\begin{array}{ccc} - & - & - \\ 0 & 0 & 1 \end{array}$	-	$\begin{array}{ll} 10 \\ 0 & 1 \end{array}$	$\left\|\begin{array}{cc} -- \\ 1 & 0 \end{array}\right\|$	$\begin{aligned} & -- \\ & 01 \end{aligned}$	--	$\begin{array}{\|ll\|} \hline 1 & \circ \\ \circ & 1 \end{array}$

(a) distractor state rows in core sub-matrix \mathbb{C}

P	--0							
$\begin{aligned} & s_{0_{0}} \\ & s_{0_{1}} \\ & s_{0_{2}} \end{aligned}$	$\begin{array}{llll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & \circ \end{array}$	$\begin{array}{lll} - & - & - \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}$	$\begin{aligned} & --- \\ & --- \\ & 000 \end{aligned}$	$\begin{array}{\|ll} \hline-- \\ 0 & 1 \\ 0 & 0 \end{array}$	$\left\lvert\, \begin{array}{\|c\|} \hline-- \\ 1 \end{array} 0\right.$	$\begin{array}{ll} \hline- & - \\ 0 & 1 \\ 0 & 0 \end{array}$	$\left.\begin{array}{\|c\|} \hline-- \\ -- \\ 0 \end{array} \right\rvert\,$	$\begin{array}{\|cc\|} \hline-- \\ 0 & 1 \\ 0 & 0 \end{array}$
$\begin{aligned} & s_{1_{0}} \\ & s_{1} \\ & s_{12} \\ & \hline \end{aligned}$	$\begin{aligned} & -00 \\ & -00 \\ & --0 \end{aligned}$	$\begin{array}{llll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$-$	$\begin{array}{ll} \hline 10 \\ 10 \end{array}$	$\begin{aligned} & -\overline{1} \\ & 01 \end{aligned}$	$\begin{aligned} & -- \\ & -- \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & -- \\ & -- \\ & -- \end{aligned}$	$\begin{array}{\|ll\|} \hline 10 \\ 10 \end{array}$
$\begin{aligned} & s_{2_{0}} \\ & s_{2_{1}} \\ & s_{2_{2}} \end{aligned}$	$\begin{aligned} & --0 \\ & --0 \\ & --0 \end{aligned}$	---	$\begin{array}{llll} 1 & \circ & \circ \\ 0 & 1 & \circ \\ \circ & \circ & 1 \end{array}$		--	--	--	---
$\begin{aligned} & s_{3}{ }_{0} \\ & s_{3} \\ & \hline \end{aligned}$	$\begin{aligned} & -00 \\ & --0 \end{aligned}$	$\begin{aligned} & -1 \\ & 0 \end{aligned} 01$		$\begin{array}{lll} \hline 1 & \circ \\ \circ & 1 \end{array}$	$\overline{-} \overline{-}$	$\overline{0} 1$		$\begin{array}{ll} \hline 1 & 0 \\ 0 & 1 \end{array}$
$\begin{aligned} & s_{4_{0}} \\ & s_{4} \end{aligned}$	$\begin{aligned} & --0 \\ & -00 \end{aligned}$	-0-		$-\overline{1}$	$\begin{array}{ll} \hline 1 & \circ \\ \circ & 1 \end{array}$	-		$\begin{array}{\|c} --- \\ 10 \end{array}$
$\begin{aligned} & s_{5_{0}} \\ & s_{5_{1}} \end{aligned}$	$\begin{aligned} & -00 \\ & --0 \end{aligned}$	--		10	--	$\begin{array}{ll} \hline 1 \circ \\ \circ & 1 \end{array}$	---	10
$\begin{aligned} & s_{6_{0}} \\ & s_{6_{1}} \\ & \hline \end{aligned}$	$\begin{aligned} & --0 \\ & --0 \end{aligned}$	----		---	---	---	$\begin{array}{ll} \hline 1 \circ \\ \circ & 1 \end{array}$	--
$\begin{aligned} & s_{7_{0}} \\ & s_{7_{1}} \end{aligned}$	$\begin{aligned} & -00 \\ & --0 \end{aligned}$	$\begin{array}{\|ll} - & - \\ 0 & 0 \end{array}$	---	$\begin{array}{ll} \hline 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{\|c} -- \\ 10 \end{array}$	$\begin{array}{ll} - & - \\ 0 & 1 \\ \hline \end{array}$	--	$\begin{array}{ll} \hline 1 & \circ \\ \circ & 1 \end{array}$

(b) $\operatorname{Dst}\left(s_{0_{2}}, s_{0_{0}}\right)$ made impossible

Figure 29: Distractor reduction stage 1

An intra-cell superset row $s_{i_{j}}$ of state row $s_{i_{f}}$ is called a distractor state row $s_{i_{j}}$ (Dst) for state row $s_{i_{f}}$:

$$
s_{i_{j}} \supseteq s_{i_{f}} \Leftrightarrow \operatorname{Dst}\left(s_{i_{j}}, s_{i_{f}}\right)
$$

Figure 29a shows several distractor state rows:

$$
\begin{aligned}
& \operatorname{Dst}\left(s_{0_{0}}, s_{0_{1}}\right), \operatorname{Dst}\left(s_{0_{1}}, s_{0_{0}}\right), \operatorname{Dst}\left(s_{0_{2}}, s_{0_{0}}\right), \operatorname{Dst}\left(s_{0_{2}}, s_{0_{1}}\right), \\
& \operatorname{Dst}\left(s_{1_{0}}, s_{1_{1}}\right), \operatorname{Dst}\left(s_{1_{1}}, s_{1_{0}}\right), \\
& \operatorname{Dst}\left(s_{2_{0}}, s_{2_{1}}\right), \operatorname{Dst}\left(s_{2_{0}}, s_{2_{2}}\right), \operatorname{Dst}\left(s_{2_{1}}, s_{2_{0}}\right), \operatorname{Dst}\left(s_{2_{1}}, s_{2_{2}}\right), \operatorname{Dst}\left(s_{2_{2}}, s_{2_{0}}\right), \operatorname{Dst}\left(s_{2_{2}}, s_{2_{1}}\right)
\end{aligned}
$$

A distractor state row $s_{i_{j}}$ can be removed from a consolidated satoku matrix \mathbb{S} (see $\operatorname{Dst}\left(s_{0_{2}}, s_{0_{0}}\right)$ in figure 29b).

Proof. The argument is the same as for advance decisions. If a state row $s_{g_{h}}$ is combinable with state row $s_{i_{j}}$ it is also combinable with state row $s_{i_{f}}$, unless both cell row $r_{i_{j_{g}}}$ and cell row $r_{i_{f_{g}}}$ are bound. Therefore, state row $s_{i_{j}}$ can be removed, as it does not offer different choices for merging than state row $s_{i_{f}}$.

After removing the distractor state row $\operatorname{Dst}\left(s_{0_{2}}, s_{0_{0}}\right)$ from figure 29 b , the re-ordered satoku matrix \mathbb{S} in figure 30a is already strictly provable, since it has only unrestricted and bound cell rows in core sub-matrix \mathbb{C}. With two more distractor state row removals the satoku matrix \mathbb{S} is reduced to a 2-state cell matrix in figure 30 b .

P	---	---	--	--	--	--	--	-
$\begin{aligned} & s_{0_{0}} \\ & s_{0_{1}} \\ & s_{0_{2}} \end{aligned}$	$\begin{array}{llll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$		$\begin{array}{ll} 10 \\ 10 \\ -1 \end{array}$	$\left\|\begin{array}{c} -- \\ 0 \\ - \\ - \end{array}\right\|$	$\left.\begin{array}{\|c\|} \hline-- \\ -- \\ 0 \end{array} \right\rvert\,$	$\begin{array}{\|l} \hline-- \\ -- \\ -- \end{array}$	$\begin{array}{ll} 10 \\ 10 \\ 10 \end{array}$	$\begin{array}{ll} 1 & 0 \\ 1 & 0 \end{array}$
$\begin{aligned} & s_{1_{0}} \\ & s_{1} \\ & s_{1_{2}} \end{aligned}$	$\begin{aligned} & --- \\ & --- \end{aligned}$	$\begin{array}{lll} 1 & \circ & 0 \\ \circ & 1 & 0 \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & -- \\ & -- \end{aligned}$	$\begin{aligned} & -- \\ & -- \end{aligned}$	$\left\lvert\, \begin{aligned} & -- \\ & -- \\ & \hline \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & -- \\ & -- \\ & \hline \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & -- \\ & -- \end{aligned}\right.$	$\begin{aligned} & -- \\ & -- \end{aligned}$
$\begin{aligned} & s_{2_{0}} \\ & s_{2_{1}} \\ & \hline \end{aligned}$	--- 0	---	$\begin{aligned} & \hline 1 \circ \\ & \circ 1 \end{aligned}$	$\begin{array}{\|c} -- \\ 10 \end{array}$	- 01	---	$\begin{array}{\|ll\|} \hline 1 & 0 \\ 0 & 1 \end{array}$	10
$\begin{aligned} & s_{3_{0}} \\ & s_{3_{1}} \\ & \hline \end{aligned}$	-0-	---	$-\overline{10}$	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	---	$\left\lvert\, \begin{aligned} & -- \\ & -- \end{aligned}\right.$	$-\overline{-}$	$-\overline{10}$
$\begin{aligned} & s_{4_{0}} \\ & s_{4_{1}} \end{aligned}$	--0	--	10	--	$\begin{array}{\|ll\|} \hline 1 & \circ \\ \circ & 1 \end{array}$	---	10	10
$\begin{aligned} & s_{5_{0}} \\ & s_{5_{1}} \\ & \hline \end{aligned}$	----	---	--	---	--	$\begin{array}{ll} \hline 1 \circ \\ \circ & 1 \end{array}$	---	--
$\begin{aligned} & s_{6_{0}} \\ & s_{6_{1}} \end{aligned}$	--- 0	----	$\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}$	$-\overline{-}$	$\mid-\overline{-}$	---	$\begin{array}{\|ll\|} \hline 1 & \circ \\ \circ & 1 \end{array}$	10
$\begin{aligned} & s_{7_{0}} \\ & s_{7_{1}} \end{aligned}$	$\begin{aligned} & --- \\ & 001 \end{aligned}$	----	$\overline{0} 1$	$-\overline{10}$	$\begin{array}{\|c} -- \\ 01 \end{array}$	---	- 01	$1 \circ$ \circ 1

(a) impossible state row removed, re-ordered

P								
$\begin{aligned} & s_{0_{0}} \\ & s_{0_{1}} \end{aligned}$	$\begin{array}{ll} \hline 1 \circ \\ \circ & 1 \end{array}$				- 01			
$\begin{aligned} & s_{1_{0}} \\ & s_{1_{1}} \end{aligned}$	-	$\begin{array}{ll} \hline 1 & \circ \\ \circ & 1 \end{array}$						
$\begin{aligned} & s_{2_{0}} \\ & s_{2_{1}} \end{aligned}$	$\overline{0} 1$		$\begin{array}{\|ll\|} \hline 1 \circ \\ \circ & 1 \end{array}$	$\overline{10}$	$\overline{0} 1$		$\begin{array}{ll} \hline 1 & 0 \\ 0 & 1 \end{array}$	10
$\begin{aligned} & s_{3} \\ & s_{3} \end{aligned}$	0		$\overline{1}-\overline{0}$	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	---		$\overline{10}$	$\begin{array}{\|c} -- \\ 10 \end{array}$
$\begin{aligned} & s_{4_{0}} \\ & s_{4_{1}} \end{aligned}$	-0		10	-	$\begin{array}{\|ll\|} \hline 1 & 0 \\ \circ & 1 \\ \hline \end{array}$		0	10
$\begin{aligned} & s_{5_{0}} \\ & s_{5_{1}} \end{aligned}$	---				---	$\circ 1$		
$\begin{aligned} & s_{6_{0}} \\ & s_{6_{1}} \end{aligned}$	$\overline{-}$	---	$\begin{array}{\|ll\|} \hline 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{\|c} -- \\ 10 \end{array}$	$\begin{array}{\|c} -- \\ 0 \\ \hline \end{array}$	-	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	10
$\begin{aligned} & s_{7_{0}} \\ & s_{7_{1}} \end{aligned}$	$\overline{0} 1$	$-$	$\begin{array}{\|c} -- \\ 0 \end{array}$	$\begin{aligned} & -- \\ & 10 \end{aligned}$	$\begin{array}{\|c} -- \\ 0 \\ \hline \end{array}$	-	$\overline{0--}$	$\begin{array}{ll} \hline 1 \circ \\ \circ & 1 \end{array}$

(b) reduced to 2 -state cells, by removing $\operatorname{Dst}\left(s_{0_{0}}, s_{0_{1}}\right)$ and $\operatorname{Dst}\left(s_{1_{0}}, s_{1_{1}}\right)$

Figure 30: Distractor reduction stage 2

Distractors appear quite often in propostional formulas which have been transformed to conform to k-SAT by adding additional variables ${ }^{3}$:
$\left.\begin{array}{lllllllll}(\neg a \vee \neg b & \left.\vee \neg x 00_{0}\right) & \wedge & (\neg c \vee & \left.x 00_{0} \vee \neg x 00_{1}\right) & \wedge & (\neg d \vee \neg e & \vee & \left.x 00_{1}\right)\end{array}\right) \wedge$

The corresponding satoku matrix \mathbb{S} in figure 31 does not present trivially simple.
3. More often than not, turning perfectly polynomial-time problems into exponential ones.

P	-	---			---	--	---				
s_{0}	$1 \circ \circ$	100	100	100	0--	0--	---	0--	---	0--	
s_{01}	$\bigcirc 1 \circ$	$0--$	$0--$	$0--$	100	100	-	100	--0	100	---
$s_{0_{2}}$	$\bigcirc \circ 1$	$0--$	$0--$	$0--$	100	100	-0-	100		100	
$s_{1_{0}}$	100	$1 \circ \circ$	100	100	0--	0--	---	0--	---	0--	
s_{1}	0--	-1 0	$0--$	$0--$	100	100	---	100	--0	100	
$s_{1_{2}}$	$0--$	$\bigcirc \circ 1$	$0--$	$0--$	100	100	--0	100		100	
s_{20}	100	100	$1 \circ \circ$	100	0--	0--	---	0 --	-	0--	
s_{21}	0--	0 --	-10	$0--$	100	100		100	--0	100	
s_{22}	$0--$	$0-$	$\bigcirc \circ 1$	$0--$	100	100	---	100	---	100	-0-
s_{30}	100	100	100	$1 \circ \circ$	0--	0--	---	$0--$	--	$0--$	---
s_{31}	0 --	$0--$	$0--$	-10	100	100		100	--0	100	
s_{3}	$0--$	$0--$	$0--$	$\bigcirc \circ 1$	100	100		100		100	--0
s_{40}	$0--$	$0--$	$0--$	$0--$	$1 \circ \circ$	100		100	---	100	---
$s_{4_{1}}$	100	100	100	100	$\bigcirc 1 \circ$	0--		0 --	--0	0--	
s_{42}	100	100	100	100	$\bigcirc \circ 1$	$0--$	-0-	$0--$		$0--$	
s_{50}	$0--$	$0--$	$0--$	$0--$	100	$1 \circ \circ$	---	100	---	100	---
$s_{5_{1}}$	100	100	100	100	0 --	-10	---	0 -	--0	0--	---
$s_{5_{2}}$	100	100	100	100	0--	$\bigcirc \circ 1$	--0	$0--$		$0--$	
$s_{6}{ }_{0}$	---				---	---	$1 \circ \circ$	---		---	$0--$
s_{61}	--0				- 0		- 1	---			100
s_{6}		--0				--0	$\bigcirc \circ$				100
${ }^{s_{7}}$	0--	$0--$	$0--$	$0--$	100	100	---	$1 \circ \circ$	--	100	---
s_{7}	100	100	100	100	--	0 --		-10	--0	0	
$s_{7_{2}}$	100	100	100	100	0--	0		- ○ 1		$0-$	-0
s_{8}	---	---			---	---	---	---	$1 \circ \circ$		
s_{8} s_{8}		- 0	-0	- 0 -	-0	--0-		-	$\bigcirc 10$	---	
$s_{8_{2}}$	-0-	-	-0	- 0 -	-0	- 0 -		-		-0-	
s_{9}	0--	$0--$	$0--$	$0--$	100	100		100	---	$1 \circ \circ$	--
$s_{9}{ }_{1}$	100	100	100	100	0--	0--	---	0 -	--0	-1 0	---
$s_{9_{2}}$	100	100	100	100	$0--$	$0--$	---	0	---	- ○ 1	--0
$s_{10}{ }_{0}$	---	---	--	---	---	---	0 --	---	---	---	$1 \circ \circ$
$s_{10}{ }_{1}$		---	--0	---	---	---	100	--0	---	---	- 10
$s_{10}{ }_{2}$				$--0$	---	---	100		---	--0	$\bigcirc \circ 1$

Figure 31: distractor $s_{8_{2}}$ for $s_{8_{0}}$ or $s_{8_{1}}$

However, after removal of distractor $s_{8_{2}}$ for state row $s_{8_{0}}$, and re-ordering satoku matrix \mathbb{S} to separate core sub-matrix \mathbb{C} from 2 -state sub-matrix $\mathbb{S}_{2}, 8$ more distractors are revealed in figure 32 .

P	---	-	- -	---	-	- -	---	--	-	---	-
$\begin{aligned} & s_{0_{0}} \\ & s_{0_{1}} \\ & s_{0_{2}} \\ & \hline \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{\|lll\|} \hline 1 & 0 & 0 \\ 0 & - & - \\ 0 & - & - \end{array}$	$\begin{aligned} & 100 \\ & 0-- \\ & 0-- \end{aligned}$	$\begin{array}{lll} 1 & 0 & 0 \\ 0 & - & - \\ 0 & - & - \end{array}$	$\begin{array}{lll} 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\left\|\begin{array}{ccc} 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}\right\|$	$\begin{aligned} & --- \\ & --- \\ & -0- \end{aligned}$	$\begin{array}{llll} \hline & 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\begin{array}{lll} \hline 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$---$	$\begin{aligned} & -- \\ & -- \end{aligned}$
$\begin{aligned} & s_{1_{0}} \\ & s_{1_{1}} \\ & s_{1_{2}} \end{aligned}$	$\begin{aligned} & 100 \\ & 0-- \\ & 0-- \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & 100 \\ & 0-- \\ & 0-- \end{aligned}$	$\begin{array}{lll} \hline 1 & 0 & 0 \\ 0 & - & - \\ 0 & - & - \end{array}$	$\begin{array}{\|lll\|} \hline 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\left\lvert\, \begin{array}{cccc} \hline 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}\right.$		$\begin{array}{lll} \hline 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\begin{array}{lll} \hline 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$		$\begin{aligned} & -- \\ & -- \end{aligned}$
$\begin{aligned} & s_{2_{0}} \\ & s_{2_{1}} \\ & s_{2_{2}} \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 0-- \\ & 0-- \end{aligned}$	$\begin{array}{\|lll\|} \hline 1 & 0 & 0 \\ 0 & - & - \\ 0 & - & - \\ \hline \end{array}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{lll} \hline 1 & 0 & 0 \\ 0 & - & - \\ 0 & - & - \end{array}$	$\begin{array}{\|lll} \hline 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\begin{array}{lll} \hline 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$		$\begin{array}{lll} \hline 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\begin{array}{lll} \hline 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$		$\begin{aligned} & -- \\ & -- \end{aligned}$
$\begin{aligned} & s_{3_{0}} \\ & s_{3_{1}} \\ & s_{3_{2}} \end{aligned}$	$\begin{aligned} & 100 \\ & 0-- \\ & 0-- \end{aligned}$	$\begin{array}{\|lll\|} \hline 1 & 0 & 0 \\ 0 & - & - \\ 0 & - & - \\ \hline \end{array}$		$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{array}{lll} 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}\right.$	$\begin{array}{lll} \hline 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$		$\begin{array}{llll} \hline & 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\begin{array}{lll} \hline 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$		$\begin{aligned} & -- \\ & -- \\ & -- \end{aligned}$
$\begin{aligned} & s_{4_{0}} \\ & s_{4_{1}} \\ & s_{4_{2}} \end{aligned}$	$\begin{array}{lll} 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$		$\begin{array}{lll} 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\begin{array}{lll} \hline 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$1 \circ \circ$ - 1 ○ $\circ \circ 1$	$\begin{array}{ll} 1 & 0 \\ 0 & 0 \\ 0 & - \\ 0 & - \end{array}$		$\begin{aligned} & 100 \\ & 0-- \\ & 0-- \end{aligned}$	$\begin{aligned} & 100 \\ & 0-- \\ & 0-- \end{aligned}$	$\begin{aligned} & --- \\ & --- \end{aligned}$	$\begin{aligned} & -- \\ & -- \end{aligned}$
$\begin{aligned} & s_{5_{0}} \\ & s_{5_{1}} \\ & s_{5_{2}} \end{aligned}$	$\begin{array}{lll} 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\begin{array}{\|cccc} \hline 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\left.\begin{array}{llll} \hline 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array} \right\rvert\,$	$\begin{array}{lll} 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\begin{aligned} & 100 \\ & 0-- \\ & 0-- \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$		$\begin{aligned} & 100 \\ & 0-- \\ & 0-- \end{aligned}$	$\begin{aligned} & 100 \\ & 0-- \\ & 0-- \end{aligned}$	$\begin{aligned} & --- \\ & --- \end{aligned}$	$\begin{aligned} & -- \\ & -- \end{aligned}$
$\begin{aligned} & s_{6_{0}} \\ & s_{6_{1}} \\ & s_{6_{2}} \end{aligned}$	$--0$	$\begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}$	-	-	$--0$	--- --- --0	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$		$\begin{aligned} & --- \\ & --- \end{aligned}$	$\begin{array}{llll} \hline 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\begin{aligned} & -- \\ & -- \\ & -- \end{aligned}$
$\begin{aligned} & s_{7_{0}} \\ & s_{7_{1}} \\ & s_{7_{2}} \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned} 0-\quad-\quad 0$	$\begin{array}{cccc} \hline & 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$		$\begin{aligned} & 0 \end{aligned}-\quad-$	$\begin{aligned} & 100 \\ & 0 \\ & 0 \end{aligned}--\quad-\quad .$	$\begin{array}{lll} 1 & 0 & 0 \\ 0 & - & - \\ 0 & - & - \end{array}$		$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & 100 \\ & 0-- \\ & 0-- \end{aligned}$	$-0-$	$\begin{aligned} & -- \\ & -- \end{aligned}$
$\begin{aligned} & s_{8_{0}} \\ & s_{8_{1}} \\ & s_{8_{2}} \end{aligned}$	$\begin{array}{ll} 0 & - \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{array}$	$\begin{array}{\|cccc} \hline 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\begin{array}{lll} \hline 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\left.\begin{array}{\|lll} \hline 1 & 0 & 0 \\ 0 & - & - \\ 0 & - & - \end{array} \right\rvert\,$	$\begin{array}{\|ccc\|} \hline 1 & 0 & 0 \\ 0 & - & - \\ 0 & - & - \end{array}$		$\begin{aligned} & 100 \\ & 0-- \\ & 0-- \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$		-- --
$\begin{aligned} & s_{9_{0}} \\ & s_{9_{1}} \\ & s_{9_{2}} \\ & \hline \end{aligned}$	-	--- --- ---	--- --0	$\begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}$			$\begin{array}{ll} 0 & - \\ 1 & 0 \\ 10 \\ 1 & 0 \end{array}$	$--0$	$\begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}$	$\begin{array}{lll}1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1\end{array}$	$\begin{aligned} & -- \\ & -- \\ & -- \end{aligned}$
$\begin{aligned} & s_{10_{0}} \\ & s_{10_{1}} \\ & \hline \end{aligned}$	--- ---	-	- -	---	- - -	- - -	-	- - -	- - -	--- ---	1 \circ \circ 1

Figure 32: removal of $\operatorname{Dst}\left(s_{8_{2}}, s_{8_{0}}\right)$ reveals more distractors

Removing distractors $\operatorname{Dst}\left(s_{0_{2}}, s_{0_{1}}\right)$, $\quad \operatorname{Dst}\left(s_{1_{2}}, s_{1_{1}}\right), \quad \operatorname{Dst}\left(s_{2_{2}}, s_{2_{1}}\right), \quad \operatorname{Dst}\left(s_{3_{2}}, s_{3_{1}}\right)$, $\operatorname{Dst}\left(s_{4_{2}}, s_{4_{1}}\right), \operatorname{Dst}\left(s_{5_{2}}, s_{5_{1}}\right), \operatorname{Dst}\left(s_{7_{2}}, s_{7_{1}}\right), \operatorname{Dst}\left(s_{8_{2}}, s_{8_{1}}\right)$ in figure 32 reveals still 2 more distractors in figure 33.

P	--	--	-	--	--	--	---	--	-	---	-
s_{0}	$1 \circ$	10	10	10	01	01	---	01	01		--
$s_{0_{1}}$	-1	01	01	01	10	10	---	10	10	---	
$s_{1_{0}}$	10	$1 \circ$	10	10	01	01	---	01	01		--
$s_{1_{1}}$	01	- 1	01	01	10	10	---	10	10	---	--
s_{2}	10	10	$1 \circ$	10	01	01	---	01	01		--
$s_{2_{1}}$	01	01	- 1	01	10	10	---	10	10		
s_{30}	10	10	10	$1 \circ$	01	01	---	01	01		--
s_{3}	01	01	01	$\bigcirc 1$	10	10	---	10	10		--
s_{40}	01	01	01	01	$1 \circ$	10	---	10	10	---	--
$s_{4_{1}}$	10	10	10	10	- 1	01	---	01	01		
s_{50}	01	01	01	01	10	$1 \circ$	--	10	10		--
s_{51}	10	10	10	10	01	- 1	---	01	01		
$s_{6}{ }_{0}$	--	--	--	--	--	--	$1 \circ \circ$	--	--	0 --	--
s_{6}	--				--	--	- 1 ○	--	--	100	--
s_{6}	--	--	--	--	--	--	- ○ 1	--	--	100	
s_{7}	01	01	01	01	10	10	---	$1 \circ$	10	---	--
s_{7}	10	10	10	10	01	01	---	- 1	01	---	--
s_{8}	01	01	01	01	10	10	--	10	$1 \circ$	---	--
$s_{8_{1}}$	10	10	10	10	01	01	---	01	- 1	---	
s_{9}	-	--	--	--	--	--	$0--$	--	--	$1 \circ \circ$	--
$s_{9_{1}}$	--					--	100	--		$\bigcirc 1 \circ$	--
$s_{9_{2}}$	--	--	--			--	100	-		$\bigcirc \circ 1$	
$\begin{aligned} & s_{10_{0}} \\ & s_{10_{1}} \\ & \hline \end{aligned}$	---	--	--	--	--	--	----	--	--	---	

Figure 33: still more distractors after distractor removal

Dropping redundancies and re-ordering the satoku matrix in figure 33 results in the satoku matrix shown in figure 34. State rows $s_{0_{1}}, s_{0_{2}}, s_{1_{1}}, s_{1_{2}}$, containing only decided cell rows in core submatrix \mathbb{C}, show that satoku matrix \mathbb{S} is strictly provable.

P	-	---	-	--
$s_{0_{0}}$	$10 \circ$	0--	--	--
$s_{0_{1}}$	-10	100	--	--
$s_{\mathrm{O}_{2}}$	$\bigcirc \circ 1$	100	--	--
$s_{1_{0}}$	0--	$1 \circ \circ$	-	--
$s_{1}{ }_{1}$	100	-10	--	--
s_{12}	100	$\bigcirc \circ 1$	--	
$s_{2_{0}}$	---	--	1 。	--
$s_{2_{1}}$	---		- 1	--
s_{30}	---	---	--	$1 \circ$
$s_{3_{1}}$	---		--	$\bigcirc 1$

Figure 34: satoku matrix \mathbb{S} strictly provable

Although not necessary, removing distractors $\operatorname{Dst}\left(s_{0_{2}}, s_{0_{1}}\right)$, $\operatorname{Dst}\left(s_{1_{2}}, s_{1_{1}}\right)$, in figure 34 reduces satoku matrix \mathbb{S} to a 2 -state cell matrix in figure 35 , also showing that satoku matrix \mathbb{S} is strictly provable.

P	--	--	--	--
$s_{0_{0}}$	$1 \circ$	01		
$s_{0_{1}}$	- 1	10	--	
$s_{1_{0}}$	01	10		--
$s_{1_{1}}$	10	$\bigcirc 1$	--	
s_{2}	--	--	1 o	--
s_{2}	--	-	- 1	
$s_{3}{ }_{0}$	--	--	--	$1 \circ$
s_{3}				- 1

Figure 35: reduced to 2 -state cells

9.2.1 Special Properties of 2-State Distractors

When a cell $c_{i_{i}}$ has 2 atomic states $s_{i_{i_{j}}}, s_{i_{i_{i_{f}}}}, j \neq f,\left|c_{i_{i}}\right|=2$, and state row $s_{i_{j}}$ has an impossible CFR $s_{i_{j_{g_{h}}}} g \neq i$, in an undecided cell row $r_{i_{j_{g}}}$ then state row $s_{i_{j}}$ can only be a distractor, if cell row $r_{i_{g}}$ is unrestricted or bound (see figure 36).

P	---	--	
$s_{0_{0}}$	$1 \circ \circ$	\circ	--
$s_{0_{1}}$	$\circ 1 \circ$	--	
$s_{0_{2}}$	$\circ \circ 1$	01	$s_{g_{h}}: \operatorname{Imp}\left(s_{g_{h_{i}}}\right)$
$s_{1_{0}}$	--0	$1 \circ$	$s_{i_{j}}: \operatorname{lmp}\left(s_{i_{j_{g_{h}}}}\right)$
$s_{1_{1}}$	---	$\circ 1$	$s_{i_{f}}: \operatorname{Unr}\left(r_{i_{f_{g}}}\right)$

(a) Distractor $s_{i_{j}}$, cell row $r_{i_{g}}$ undecided

P	---	--		
$s_{0_{0}}$	$1 \circ$	\circ	\circ	1

(b) Distractor $s_{i_{j}}$, cell row $r_{i_{f_{g}}}$ bound

Figure 36: 2-state distractor with impossible state

Proof. If both state rows $s_{i_{j}}, s_{i_{f}}$ are mutually exclusive with the same state $s_{g_{h_{g_{h}}}}$, then CFR $s_{i_{j_{g_{h}}}}$ is impossible, which implies that CFR $s_{g_{h_{i_{j}}}}$ is also impossible. Further CFR $s_{i_{f_{g}}}$ is impossible, which implies that CFR $s_{g_{h_{i_{f}}}}$ is also impossible. Since cell row $r_{g_{h_{i}}}$ has only 2 CFR states $s_{g_{h_{j}}}, s_{g_{n_{i_{f}}}}$, which are both impossible, cell row $r_{g_{h_{i}}}$ is a conflict, which means that the entire state row $s_{g_{h}}$ is impossible and is therefore removed. However, this also removes the mutually exclusive CFR states $s_{i_{j_{g_{h}}}}, s_{i_{f_{g_{h}}}}$.

If state row $s_{i_{f}}$ for a 2 -state cell $c_{i_{i}}$ does not have any impossible CFR states $s_{i_{f_{g_{h}}}} g \neq i$, at all, making state row $s_{i_{j}}, j \neq f$, impossible, is the equivalent of pure literal elimination in DPLL. In the satoku matrix, this case presents as a 2-state clause being reduced to a single state, which in turn triggers unit propagation (see figure 37).

P	---	--	--	
s_{0}	$1 \circ \circ$	--	--	
s_{0}	-10	--	-	
$s_{0_{2}}$	$\bigcirc \circ 1$	01	--	
$s_{1}{ }_{0}$	--0	$1 \circ$	10	
$s_{1_{1}}$	---	-1	--	$s_{i_{f}}: \operatorname{Pos}\left(s_{i_{f_{g_{h}}}}\right), g \neq i$
$s_{2_{0}}$	---	--	$1 \circ$	
s_{21}	---	01	- 1	

(a) Pure literal $s_{i_{f}}$ identified

P	-	-	0	1	-	
$s_{0_{0}}$	1	\circ	\circ	0	1	--
$s_{0_{1}}$	\circ	1	\circ	0	1	-
$s_{0_{2}}$	\circ	\circ	1	0	1	--
$s_{1_{0}}$	0	0	0	\circ	\circ	0
$s_{1_{1}}$	-	0	$s_{i_{j}}: \operatorname{lmp}\left(s_{i_{f}}\right)$			
$s_{2_{0}}$	-	-	1	-	-	0
$s_{2_{1}}$	-	1	1	\circ		
$s_{2_{f}}: \operatorname{Pos}\left(s_{i_{f_{g_{h}}}}\right), g \neq i$						

(b) Pure literal $s_{i_{f}}$ eliminated

Figure 37: Pure literal elimination

9.3 State Row Variables

To express that state row $s_{i_{j}}$ must either be selected (become the required state row of cell-matrix row c_{i}) or not, create a 2 -state cell $c_{e_{e}}$, make CFR $s_{e_{0_{i_{j}}}}$ required (by setting CFR states $s_{e_{0_{i_{g}}}}, g \neq j$, impossible) and make CFR $s_{e_{1_{i_{j}}}}$ impossible.

P	- -	- - -	- - -	-
$\begin{gathered} s_{0_{0}} \\ s_{0_{1}} \\ s_{0_{2}} \end{gathered}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$			-0 $0-$ $0-$
$\begin{aligned} & s_{1_{0}} \\ & s_{1_{1}} \\ & s_{1_{2}} \end{aligned}$	$0--$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	--- --- ---	-- -- --
$\begin{aligned} & s_{2_{0}} \\ & s_{2_{1}} \\ & s_{2_{2}} \end{aligned}$	$0--$	--- --- ---	$\begin{array}{lll}1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1\end{array}$	-- -- --
$\begin{aligned} & s_{3_{0}} \\ & s_{3} \end{aligned}$	$\begin{aligned} & -00 \\ & 0-- \end{aligned}$	---	---	$\begin{array}{\|ll\|}1 & \circ \\ \circ & 1\end{array}$

P	- -	- - -	-	--
$\begin{aligned} & s_{0_{0}} \\ & s_{0_{1}} \\ & s_{0_{2}} \end{aligned}$	$1 \circ \circ$ - 1 ○ $\circ \circ 1$	$\begin{aligned} & -0- \\ & --- \end{aligned}$	$\begin{array}{\|l\|} \hline-0- \\ --- \end{array}$	$\begin{array}{lll}1 & 0 \\ 0 & 1 \\ 0 & 1\end{array}$
$\begin{aligned} & s_{1_{0}} \\ & s_{1_{1}} \\ & s_{1_{2}} \end{aligned}$	$0--$	$1 \circ \circ$ ○ 1 ○ $\circ \circ 1$	--- ---	- -
$\begin{aligned} & s_{2_{0}} \\ & s_{2_{1}} \\ & s_{2_{2}} \\ & \hline \end{aligned}$	$0--$		1-100	--
$\begin{aligned} & s_{3_{0}} \\ & s_{3} \end{aligned}$	$\begin{aligned} & 100 \\ & 0-- \end{aligned}$	-0-	-0-	$\begin{array}{ll}1 & \circ \\ \circ & 1\end{array}$

(a) ex-status-row-variables/ex-status-row- variables-000
(b) ex-status-row-variables/ex-status-row-variables-001

To expresses that one or more of several state rows $s_{x_{y}}$ or none of them must be selected, create state row variables $c_{e_{e}} \in \mathbb{V}$ for all state rows $s_{x_{y}}$.
Create a cell $c_{i_{i}}$ with $|\mathbb{V}|+1$ states.

P	---		-	-	--		----
$\begin{aligned} & s_{0_{0}} \\ & s_{0_{1}} \\ & s_{0_{2}} \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & -0- \\ & --- \end{aligned}$	$\begin{aligned} & -0- \\ & ---- \end{aligned}$	$\left.\begin{array}{\|ll\|} \hline 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array} \right\rvert\,$	$\begin{array}{\|l\|l\|} \hline 01 \\ -- \\ -- \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ \hline \end{array}$	
$\begin{aligned} & s_{1_{0}} \\ & s_{1_{1}} \\ & s_{1_{2}} \end{aligned}$	$\begin{aligned} & \hline--- \\ & 0-- \end{aligned}$	$\begin{array}{llll} \hline 1 & \circ & \circ \\ 0 & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$-$	-- 0 -1 --	$\begin{array}{\|ll\|} \hline 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}$	$--$	
$\begin{aligned} & s_{2_{0}} \\ & s_{2} \\ & s_{2_{2}} \\ & \hline \end{aligned}$	$\begin{aligned} & --- \\ & 0-- \end{aligned}$		$\begin{array}{lll} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{\|c} -\overline{1} \\ 0 \end{array}$	$\left\lvert\, \begin{aligned} & --- \\ & -- \end{aligned}\right.$	$\begin{array}{\|ll\|} \hline 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}$	-
$\begin{aligned} & s_{3}{ }_{0} \\ & s_{3} \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 0-- \end{aligned}$	-	-	$\begin{array}{ll\|} \hline 1 & \circ \\ \circ & 1 \end{array}$	01	01	$\begin{aligned} & \hline-000 \\ & 0--- \end{aligned}$
$\begin{aligned} & s_{4}{ }_{0} \\ & s_{4} \end{aligned}$	$0-$	$\left\lvert\, \begin{array}{ccc} 0 & 1 & 0 \\ -0 & - \end{array}\right.$	-	018	$\begin{array}{ll} \hline 1 & 0 \\ \circ & 1 \end{array}$	--	$\begin{aligned} & \hline--00 \\ & -0-- \end{aligned}$
$\begin{aligned} & s_{5_{0}} \\ & s_{5_{1}} \\ & \hline \end{aligned}$	0		$\left\lvert\, \begin{array}{ccc} 0 & 1 & 0 \\ -0 & - \end{array}\right.$	01	--	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	---0 $--0-$
$\begin{aligned} & s_{6_{0}} \\ & s_{6_{1}} \\ & s_{6_{2}} \\ & s_{6_{3}} \end{aligned}$	--- --- ---	--		$\begin{array}{\|c\|} \hline-0 \\ 0- \\ 0- \\ 0- \end{array}$	$\begin{array}{\|l\|} \hline-- \\ -0 \\ 0- \\ 0- \\ \hline \end{array}$	$\left\|\begin{array}{l} -- \\ -- \\ -0 \\ 0- \end{array}\right\|$	$\begin{array}{lllll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array}$

(a) ex-status-row-variables/ex-status-row-variables-002

P	---	---	$---$	----	-----	
$\begin{aligned} & s_{0_{0}} \\ & s_{0_{1}} \\ & s_{0_{2}} \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left\|\begin{array}{l} -0- \\ --- \\ --- \end{array}\right\|$	$\left\|\begin{array}{c} -0- \\ --- \\ --- \end{array}\right\|$	$\begin{aligned} & 1000 \\ & 0--- \\ & 0--- \end{aligned}$	$\begin{aligned} & 10000 \\ & 0---- \\ & 0---- \end{aligned}$	
$\begin{aligned} & s_{1_{0}} \\ & s_{1_{1}} \\ & s_{1_{2}} \end{aligned}$		$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$		$\begin{aligned} & -0-- \\ & 0100 \\ & -0-- \end{aligned}$	$\begin{aligned} & -0 \\ & 0 \\ & 0 \end{aligned} 10--\quad-\quad 0$	
$\begin{aligned} & s_{2_{0}} \\ & s_{2_{1}} \\ & s_{2_{2}} \\ & \hline \end{aligned}$	$0--$		$\left.\begin{array}{llll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array} \right\rvert\,$	$\begin{aligned} & --0- \\ & 0--0 \\ & --0- \end{aligned}$	$\begin{aligned} & --0-0 \\ & 0--00 \\ & --00- \end{aligned}$	
$\begin{aligned} & s_{3_{0}} \\ & s_{3_{1}} \\ & s_{3_{2}} \\ & s_{3_{3}} \end{aligned}$	$\begin{array}{lll} \hline 1 & 0 & 0 \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \end{array}$	$\left\|\begin{array}{ccc} -0 & - \\ 0 & 1 & 0 \\ -0 & - \\ -0 & - \end{array}\right\|$	$\left\|\begin{array}{ccc} - & 0 & - \\ - & - & - \\ 0 & 1 & 0 \\ -0 & 0 & - \end{array}\right\|$	$\begin{array}{llll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array}$	$\begin{array}{lllll} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & - & - \end{array}$	
$\begin{aligned} & s_{4_{0}} \\ & s_{4_{1}} \\ & s_{4_{2}} \\ & s_{4_{3}} \\ & s_{4_{4}} \end{aligned}$	$\begin{aligned} & 100 \\ & 0-- \\ & 0-- \\ & 0-- \\ & 0-- \end{aligned}$	$\left\|\begin{array}{ccc} - & 0 & - \\ 0 & 1 & 0 \\ - & 0 & - \\ - & 0 & - \\ - & 0 & - \end{array}\right\|$	$\left\|\begin{array}{ccc} - & 0 & - \\ - & - & - \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right\|$	$\begin{array}{llll} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{array}$	$1 \circ \circ \circ \circ$ $\circ 1 \circ \circ \circ$ $\circ \circ 1 \circ \circ$ $\circ \circ \circ 1 \circ$ $\circ \circ \circ \circ 1$	$\begin{aligned} & \operatorname{Dst}\left(s_{7_{2}}, s_{7_{3}}\right) \\ & \operatorname{Dst}\left(s_{7_{2}}, s_{7_{4}}\right) \end{aligned}$

(b)
variables-003

For each state row variable $c_{e_{e}}$, allocate a state row $s_{i_{j}}$.
In cell row $r_{i_{j_{e}}}$ make first alternative of state row variable $s_{i_{j_{e_{0}}}}$ required (by setting $s_{i_{j_{e_{1}}}}$ impossible). In all following cell rows $r_{i_{g e}}, g>j$, make first alternative of state row variable $s_{i_{g_{0}}}$ impossible. Cell $c_{i_{i}}$ is called OR-NONE cell, and the last, unallocated state row $s_{i_{h}}$ is called OR-NONE state row.

When a state row $s_{x_{y}}$ is chosen from the core sub-matrix \mathbb{C} and all mutually exclusive state rows or cell $s_{p_{q}}, p \neq x$ in core sub-matrix \mathbb{C} are determined, the OR-NONE state row $s_{i_{h}}$ of their OR-NONE cell $c_{i_{i}}$ will be a distractor for the chosen state row $s_{x_{y}}$.
After distractor removal, cell $c_{i_{i}}$ becomes an OR cell, expressing the fact that at least one of the state rows $s_{x_{y}}, s_{p_{q}}$, must be selected.

P	---	---	---	---	----	
$\begin{aligned} & s_{0_{0}} \\ & s_{0_{1}} \\ & s_{0_{2}} \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{aligned} & \hline-0- \\ & --- \\ & --- \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \hline-0- \\ & --- \\ & --- \end{aligned}\right.$	$\begin{array}{\|lll} \hline 1 & 0 & 0 \\ 0 & - & - \\ 0 & - & - \\ \hline \end{array}$	$\begin{array}{l\|} \hline 1000 \\ 0- \\ 0---- \end{array}$	
$\begin{aligned} & s_{1_{0}} \\ & s_{1} \\ & s_{1} \end{aligned}$	$0--$ $---$	$\begin{array}{llll} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{array}{l\|} \hline--- \\ --- \\ --- \end{array}\right.$	$\begin{array}{ccc} -0 & - \\ 0 & 1 & 0 \\ -0 & - \end{array}$	$\begin{gathered} \hline-010 \\ 0100 \\ -000- \end{gathered}$	
$\begin{aligned} & s_{2_{0}} \\ & s_{2_{1}} \\ & s_{2_{2}} \\ & \hline \end{aligned}$	$\begin{aligned} & --- \\ & 0-- \end{aligned}$	$\left\|\begin{array}{l} --- \\ --- \end{array}\right\|$	$\begin{array}{llll} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left\|\begin{array}{c} --0 \\ 0-- \\ --0 \end{array}\right\|$	$\begin{array}{\|cc\|} \hline-l_{0} & 0 \\ 0-- & - \\ --0 & 0 \end{array}$	
$\begin{aligned} & s_{3_{0}} \\ & s_{3_{1}} \\ & s_{3_{2}} \end{aligned}$	$\begin{aligned} & 100 \\ & 0-- \\ & 0-- \end{aligned}$	$\left\|\begin{array}{ccc} -0 & 0 & - \\ 0 & 1 & 0 \\ -0 & - \end{array}\right\|$	$\left\|\begin{array}{ll} -0 & 0 \\ - & - \\ 0 & 1 \end{array}\right\|$	$\left\|\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}\right\|$	$\begin{array}{llll} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & - & - \end{array}$	
$\begin{aligned} & s_{4_{0}} \\ & s_{4_{1}} \\ & s_{4_{2}} \\ & s_{4_{3}} \\ & \hline \end{aligned}$		$\left\lvert\, \begin{array}{ccc} - & 0 & - \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right.$	$\left\lvert\, \begin{array}{ccc} - & 0 & - \\ - & - & - \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{array}\right.$	$\left.\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{array} \right\rvert\,$	$\begin{array}{lllll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array}$	$\begin{aligned} & \operatorname{Dst}\left(s_{4_{1}}, s_{4_{2}}\right) \\ & \operatorname{Dst}\left(s_{4_{1}}, s_{4_{3}}\right) \end{aligned}$

(a) ex-status-row-variables/ex-status-row-
(a) ex-s
variables-004

P	--	---	--	--
$s_{0_{0}}$	$1 \circ \circ$	-0-	-0-	10
$s_{0_{1}}$	-10	010	---	01
$s_{0_{2}}$	$\bigcirc \circ 1$	010	---	01
$s_{1_{0}}$	100	$1 \circ \circ$	-0-	10
$s_{1}{ }_{1}$	$0--$	- $1 \circ$	-	01
$s_{1_{2}}$	100	$\bigcirc \circ 1$	-0-	10
s_{20}	-	---	$1 \circ \circ$	--
s_{21}	0--	010	-1 0	01
s_{2}			$\bigcirc \circ 1$	
s_{30}	100	-0-	-0-	$1 \circ$
s_{31}	$0-$	010		-1

(b) ex-status-row-variables/ex-status-row-variables-005

If there are more than two state rows left in OR cell $c_{i_{i}}$ after distractor removal, we have found a distributed multivalue variable (pidgeon/hole problem).
If the OR cell $c_{i_{i}}$ is already part of core sub-matrix \mathbb{C}, it is not essential and could be removed from the satoku matrix \mathbb{S}. However, non-essential cells may still be very useful, even to the point of making provability polynomial instead of exponential [HERTEL]. It is, however, useful, to separate such cells from the core sub-matrix \mathbb{C}.

P	---	---	---	--	-
$\begin{aligned} & { }^{s_{0} 0_{0}} \\ & { }^{s_{0}} \\ & s_{1} \\ & { }^{0_{0}} \\ & \hline \end{aligned}$	$\begin{array}{lll} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{ccc} -0 & 0 & - \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{array}$	$-0-$ --- ---	$\begin{array}{lll}1 & 0 \\ 0 & 1 \\ 0 & 1\end{array}$	--1 0 0 0 0 1 0 0 0 0 1
$\begin{aligned} & { }^{s_{1} 1_{0}} \\ & s_{1} \\ & s_{1} \end{aligned}$	$\begin{array}{lll} 1 & 0 & 0 \\ 0 & - & - \\ 1 & 0 & 0 \end{array}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{aligned} & -0- \\ & --- \\ & -0- \end{aligned}\right.$	$\begin{array}{ll} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{array}$	
$\begin{aligned} & s_{2}{ }_{2} \\ & s_{21} \\ & s_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & --- \\ & 0-- \end{aligned}$	$\begin{array}{\|ccc\|} \hline- & - & - \\ 0 & 1 & 0 \end{array}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	-- 0	----
$\begin{aligned} & s_{3} 3_{0} \\ & s_{3} \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 0-- \end{aligned}$	$\begin{array}{\|ccc} -0 & - \\ 0 & 1 & 0 \end{array}$	-0-	$\begin{array}{ll} \hline 1 \circ \\ \circ & 1 \end{array}$	--00 0
$\begin{aligned} & s_{4} 4_{0} \\ & s_{4} \\ & s_{1} \\ & s_{2} \\ & s_{4} \end{aligned}$	$\begin{array}{lll} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}$	$\begin{array}{lll} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{array}$	$\left\lvert\, \begin{aligned} & -0- \\ & -0- \\ & --- \end{aligned}\right.$	$\begin{array}{ll} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{llll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array}$

(a) ex-status-row-variables/ex-status-row-variables-006

P	0--	010	--	01	--
${ }^{s_{0}}$	$\bigcirc \circ \circ$	000	000	00	00
${ }^{0_{0}}$	$\bigcirc 1 \circ$	010	- - -	01	10
${ }^{\mathrm{S}_{2}}$	$\bigcirc \circ 1$	010	---	01	01
${ }^{s} 1_{0}$	000	○○○	000	00	00
s_{11}	0--	-10	-	01	--
s_{12}	000	$\bigcirc \circ \circ$	000	00	00
s_{20}	0--	010	$1 \circ \circ$	01	--
s_{2}	$0--$	010	$\bigcirc 1 \circ$	01	--
s_{2}	$0--$	010	$\bigcirc \circ 1$	01	--
${ }^{s} 3_{0}$	0000	000	000	$\bigcirc \circ$	00
s_{3}	$0-$	010	---	- 1	--
$s_{4}{ }_{0}$	010	010	---	01	$1 \circ$
s_{4}	001	010	---	01	-1

(b) ex-status-row-variables/ex-status-row-variables-007

10. Gaussian Elimination with 3-Variable XORs

P	----	----	----	--	--	--	--	--	-	
${ }^{s} 0_{0}$	1000	--0 0	--00	01	011	10	--	--	--	$a \underline{\vee} b \underline{\text { b }}$
$s^{0_{1}}$	-100	--00	00--	01	10	01	--	--	--	
${ }^{s_{0}}$	$\bigcirc \circ 10$	00--	--0 0	10	01	011	--	--	--	
${ }^{s_{0}}$	$\bigcirc \circ \circ 1$	00--	00--	10	10	10	--	--	--	
$s_{1}{ }_{0}$	--00	1000	0-0-	01	--	--	01	--	10	$a \succeq d \underline{V}=1$
$s_{1}{ }_{1}$	--00	$\bigcirc 100$	-0-0	01	--	--	10	--	01	
s_{12}	00--	- 010	-0-0	10	--	--	01	--	$\begin{array}{lll}0 & 1 \\ 1 & \\ 1\end{array}$	
s_{13}	00--	$\bigcirc 0 \circ 1$	0-0-	10	--	--	10	--	10	
$s_{2}{ }_{0}$	-0-0	0--0	$1 \circ \circ \circ$	--	01	--	--	01	01	$a \underline{V} \underline{\square} \mathrm{f}=0$
${ }^{s_{2}}$	-0-0	-00-	-100	-	01	--	--	10	10	
$s_{2}{ }_{2}$	0-0-	0--0	$\bigcirc \circ 1 \circ$	-	10	--	--	10	01	
$s_{2}{ }_{3}$	0-0-	-00-	$\bigcirc \circ \circ 1$	--	10	--	--	01	10	
${ }^{3_{3}}$	00--	00--	----	1。	--	--	--	--	--	${ }^{a}$
$s_{3_{1}}$	--00	--00		$\bigcirc 1$	--	--	--	--	--	$\neg a$
	0-0-	----	$00--$	--	$1 \circ$	--	--	--	--	${ }^{\text {b }}$
$s_{4}{ }_{1}$	-0-0	----	--0 0	--	-1	--	--	--	--	$\neg b$
${ }^{s_{5}}$	-00-	----	----	-	--	$1 \circ$	--	--	--	${ }^{c}$
${ }^{s_{51}}$	0--0				--	-1	--	--		$\neg c$
${ }^{s_{6} 0}$	--	0-0-	----	--	--	--	$1 \circ$	--	--	${ }^{d}$
${ }^{s_{6}{ }_{1}}$		-0-0		-	--	--	-1	--		$\neg d$
${ }^{s_{7}}{ }_{0}$	----	----	0--0	--	--	--	--	$1 \circ$	--	e
$s_{7}{ }_{1}$			-00-	--	--	--	--	- 1	--	\neg -
	-	- 00 -	0-0-	--	--	--	--	--	1。	${ }^{f}$
$s_{8} 8_{1}$		$0--0$	-0-0				--	--	- 1	$\neg f$

Figure 42: 3 XOR Gauss example - mapped from CDF

P	----	----	----	--	--	--	--	-- -	--	--	--	
$\begin{aligned} & { }^{s_{0} 0_{0}} \\ & { }^{s_{0}} \\ & s_{1}{ }^{s_{2}} \\ & { }^{s_{0}} \\ & \hline \end{aligned}$	$\begin{array}{lllll} \hline 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array}$		$\begin{array}{llll} - & - & 0 & 0 \\ 0 & 0 & - & - \\ - & - & 0 & 0 \\ 0 & 0 & - & - \end{array}$	$\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{array}$	$\begin{array}{lll} 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{array}$	$\begin{array}{ll} 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{\|l\|l} \hline-- & - \\ -- & - \\ -- & - \\ -- & - \end{array}$	$\begin{array}{\|l\|} \hline-- \\ -- \\ -- \\ -- \\ -- \end{array}$	$\begin{array}{\|l\|\|} \hline-- \\ -- \\ -- \\ -- \\ \hline \end{array}$	$\begin{array}{\|lll} \hline 0 & 1 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{\|l\|} \hline-- \\ -- \\ -- \\ -- \end{array}$	$a \bigvee b \vee \neg c=0$
$\begin{aligned} & s_{10} \\ & s_{1} \\ & \hline \end{aligned}$	$\begin{array}{llll} \hline- & - & 0 & 0 \\ - & - & 0 & 0 \\ 0 & 0 & - & - \\ 0 & 0 & - & - \end{array}$	$\left.\begin{array}{llll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array} \right\rvert\,$	$\begin{aligned} & 0-0- \\ & -0-0 \\ & -0-0 \\ & 0-0- \end{aligned}$	$\begin{array}{lll} 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 1 & 0 \end{array}$	$\left\lvert\, \begin{aligned} & -- \\ & -- \\ & -- \\ & -- \end{aligned}\right.$	$\begin{array}{\|l\|} \hline-- \\ -- \\ -- \\ -- \end{array}$	0 1 1 0 0 1 1 0$\|$	$\begin{array}{\|l\|l} \hline-- \\ -- \\ - \\ -- \\ -- & \\ \hline \end{array}$	$\left.\begin{array}{\|ll\|} \hline 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{array} \right\rvert\,$	$\begin{aligned} & -- \\ & -- \\ & -- \\ & -- \end{aligned}$	$\begin{array}{\|ll\|} \hline 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}$	$a \vee \neg d \underline{V}$
$\begin{aligned} & s_{2}{ }_{2} \\ & s_{2}{ }_{1} \\ & s_{2} \\ & s_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & -0-0 \\ & -0-0 \\ & 0-0- \\ & 0-0- \end{aligned}$	$\begin{gathered} 0--0 \\ -00- \\ 0--0 \\ -00- \end{gathered}$	$\begin{array}{llll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array}$	$\left\|\begin{array}{l} -- \\ -- \\ -- \\ -- \end{array}\right\|$	$\begin{array}{lll} \hline 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 1 & 0 \end{array}$		$\left\|\begin{array}{l} -- \\ -- \\ -- \\ -- \end{array}\right\|$	0 1 1 0 1 0 0 1	$\begin{array}{lll} \hline 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{array}$		$\begin{array}{\|l\|} \hline-- \\ -- \\ -- \\ -- \end{array}$	$a \vee e \underline{V}=0$
$\begin{aligned} & s_{3_{0}} \\ & s_{3} \end{aligned}$	00 --0	$\left\lvert\, \begin{array}{cccc}0 & 0 & - \\ --1 & 0 & 0\end{array}\right.$	$\left\lvert\, \begin{aligned} & ---- \\ & ----\end{aligned}\right.$	$\begin{array}{ll} \hline 1 \circ \\ \circ & 1 \end{array}$	--	---	---	$\begin{array}{\|l\|} \hline-- \\ -- \end{array}$	$\left\lvert\, \begin{aligned} & -- \\ & -- \end{aligned}\right.$	$\begin{aligned} & --- \\ & -- \end{aligned}$	--	$\begin{array}{r} a \\ \neg a \end{array}$
$\begin{aligned} & s_{4} 4_{0} \\ & s_{4} \\ & \hline \end{aligned}$	$0-0-$ $-0-0$	$\left\lvert\, \begin{aligned} & ---- \\ & ----\end{aligned}\right.$	000--	--	$\begin{array}{ll} \hline 10 \\ \circ & 1 \end{array}$	--	--	$\begin{aligned} & -- \\ & -- \\ & \hline \end{aligned}$	--	--	--	$\begin{array}{r} b \\ \neg b \end{array}$
$\begin{aligned} & s_{5_{0}} \\ & s_{5} \end{aligned}$	$\begin{aligned} & \hline-00- \\ & 0--0 \end{aligned}$	----	----	--	--	$\begin{array}{ll} \hline 1 \circ \\ \circ & 1 \end{array}$	$\left\lvert\, \begin{aligned} & -- \\ & -- \end{aligned}\right.$	$\begin{aligned} & -- \\ & -- \end{aligned}$	---	$\begin{array}{ll} \hline 0 & 1 \\ 1 & 0 \end{array}$	--	$\begin{array}{r} c \\ \neg c \end{array}$
$\begin{aligned} & s_{6} 6_{0} \\ & s_{6} \end{aligned}$	---- ----	$\begin{gathered} 0-0- \\ -0-0 \end{gathered}$	----	--	--	--	$\begin{array}{\|ll\|} \hline 1 & \circ \\ \circ & 1 \end{array}$	$\left\lvert\, \begin{array}{l\|} --- \\ -- \\ \hline \end{array}\right.$	--	$\begin{aligned} & -- \\ & -- \end{aligned}$	$\begin{array}{\|ll\|} \hline 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{r} d \\ \neg d \end{array}$
$\begin{array}{r} { }^{s} 7_{0} \\ { }^{s} 7_{1} \\ \hline \end{array}$	---- ----	----	$\begin{aligned} & 0--0 \\ & -00- \end{aligned}$	--	--	--	- -	$\begin{array}{ll\|} \hline 1 & \circ \\ \hline & 1 \end{array}$	--	--	--	$\begin{array}{r} e \\ \neg e \end{array}$
$\begin{array}{r} s_{8_{0}} \\ s_{8_{1}} \\ \hline \end{array}$	---- ----	$\left\|\begin{array}{ccc} -0 & 0 & - \\ 0 & - & - \\ 0 \end{array}\right\|$	$\left\lvert\, \begin{gathered} 0-0- \\ -0-0 \end{gathered}\right.$	---	--	---	$--$	$\left\|\begin{array}{l} -- \\ -- \end{array}\right\|$	$\begin{array}{lll} \hline 1 & 0 \\ \circ & 1 \end{array}$	--	--	$\begin{array}{r} f \\ \neg f \end{array}$
$\begin{array}{r} { }^{s_{9} 9_{0}} \\ { }^{s_{9}} \\ \hline \end{array}$	$0--0$ $-00-$	$\left\lvert\, \begin{aligned} & ---- \\ & ----\end{aligned}\right.$	----	--	--	$\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}$	$\begin{aligned} & -- \\ & -- \end{aligned}$	$\begin{array}{l\|l} -- & - \\ -- & - \end{array}$	--	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	--	$\begin{array}{r} \neg c \\ c \end{array}$
$\begin{aligned} & s_{10} 0_{0} \\ & s_{10} \\ & \hline \end{aligned}$	---- ----	$\begin{array}{\|l\|} \hline-0-0 \\ 0-0- \\ \hline \end{array}$	------	---	---	---	$\begin{array}{ll} \hline 0 & 1 \\ 1 & 0 \end{array}$	$\begin{aligned} & -- \\ & -- \\ & \hline \end{aligned}$	---	---	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	$\begin{array}{r} \neg d \\ d \end{array}$

Figure 43: 3 XOR Gauss example - results $=0$

P	----	----	----	--	--	--	--	--	---	
$\begin{aligned} & s_{0_{0}} \\ & s_{0}{ }_{0} \\ & s_{0} 0_{2} \\ & s_{0_{3}} \\ & \hline \end{aligned}$	$\begin{array}{llll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array}$	$\left\|\begin{array}{cccc} - & 0 & 0 \\ - & - & 0 & 0 \\ 0 & 0 & - & - \\ 0 & 0 & - & - \end{array}\right\|$	$\begin{array}{\|cccc} -- & 0 & 0 \\ 0 & 0 & - & - \\ - & - & 0 & 0 \\ 0 & 0 & - & - \\ \hline \end{array}$	$\left.\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 1 & 0 \end{array} \right\rvert\,$	$\begin{array}{\|ll} \hline 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ \hline \end{array}$		$\begin{aligned} & -- \\ & -- \\ & -- \\ & -- \end{aligned}$	$\begin{array}{ll} 0 & 1 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ \hline \end{array}$	$\left\|\begin{array}{l} -- \\ -- \\ -- \\ -- \end{array}\right\|$	$a \bigvee b \underline{\vee} \neg c=0$
$\begin{aligned} & s_{1_{0}} \\ & s_{1} \\ & s_{1} \\ & s_{1} \\ & s_{1} 3 \\ & \hline \end{aligned}$		$\left.\begin{array}{llll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array} \right\rvert\,$	$\left\|\begin{array}{c} 0-0- \\ -0-0 \\ -0-0 \\ 0-0- \end{array}\right\|$	$\begin{array}{lll}0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 1 & 0\end{array}$	$\begin{array}{\|l\|} \hline-- \\ -- \\ -- \\ -- \end{array}$	$\begin{aligned} & \hline-- \\ & -- \\ & -- \\ & -- \end{aligned}$	$\begin{array}{lll} \hline 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{array}$	$\begin{aligned} & \hline-- \\ & -- \\ & -- \\ & -- \end{aligned}$	$\begin{array}{lll} \hline 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}$	$a \bigvee \neg d \underline{V}$
$\begin{aligned} & s_{2_{0}} \\ & s_{2} \\ & s_{2} \\ & s_{2} \\ & s_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & -0-0 \\ & -0-0 \\ & 0-0- \\ & 0-0- \end{aligned}$	$\left\|\begin{array}{cccc} 0 & - & -0 \\ -0 & 0 & - \\ 0 & - & - & 0 \\ -0 & 0 & - \end{array}\right\|$	$\left\|\begin{array}{llll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array}\right\|$	$\begin{aligned} & -- \\ & -- \\ & -- \\ & -- \end{aligned}$	$\begin{array}{lll} 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 1 & 0 \end{array}$	$\left.\begin{array}{lll} \hline 0 & 1 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{array} \right\rvert\,$	$\begin{array}{lll} \hline 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{array}$	$\begin{aligned} & -- \\ & -- \\ & -- \\ & -- \end{aligned}$	$\begin{aligned} & -- \\ & -- \\ & -- \end{aligned}$	$a \bigvee e \bigvee f=0$
$\begin{aligned} & { }^{s_{3}}{ }_{0} \\ & s_{3} \\ & \hline \end{aligned}$	$\begin{gathered} \hline 00-- \\ --00 \end{gathered}$	000--	----	1) 0	---	---	-- --	--	--	$\begin{array}{r} a \\ \neg a \end{array}$
$\begin{aligned} & s_{4_{0}} \\ & s_{4} \\ & \hline \end{aligned}$	$\begin{gathered} 0-0- \\ -0-0 \end{gathered}$	----	$\left\|\begin{array}{ccc} 0 & 0 & - \\ - & - & - \\ 0 \end{array}\right\|$	--	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	--	-- --	--	--	$\begin{array}{r} b \\ \neg b \end{array}$
$\begin{array}{r} s_{5} 5_{0} \\ s_{5} \\ \hline \end{array}$	----- ----	----	$\left\|\begin{array}{cc} 0 & --0 \\ -0 & 0 \end{array}\right\|$	--	--	$\begin{array}{ll} \hline 10 \\ \circ & 1 \end{array}$	$\left\|\begin{array}{l} -- \\ -- \end{array}\right\|$	--	--	$\begin{array}{r} e \\ \neg e \end{array}$
$\begin{array}{r} s_{6} 6_{0} \\ s_{6} \\ \hline \end{array}$	-----	$\begin{aligned} & \hline-00- \\ & 0--0 \end{aligned}$	$\begin{gathered} 0-0- \\ -0-0 \end{gathered}$	--	---	---	$\begin{array}{lll} \hline 1 & \circ \\ \circ & 1 \end{array}$	--	--	$\begin{array}{r} f \\ \neg f \end{array}$
$\begin{array}{r} { }^{s} 7_{0} \\ { }^{s} 7_{1} \\ \hline \end{array}$	$\begin{gathered} 0--0 \\ -00- \end{gathered}$	----	----	--	--	--	--	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	--	$\begin{array}{r} \neg c \\ c \end{array}$
$\begin{aligned} & s_{8_{0}} \\ & s_{8} \\ & \hline \end{aligned}$	----	$\begin{array}{\|l\|} \hline-0-0 \\ 0-0-0 \\ \hline \end{array}$	----	--	--	--	$--$	--	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	$\begin{array}{r} \neg d \\ d \end{array}$

Figure 44: 3 XOR Gauss example - condensed

Gauss-Jordan elimination.

$$
\left.\begin{array}{lllllll}
1 & 1 & 0 & 0 & 1 & 0 & =0 \\
1 & 0 & 0 & 1 & 0 & 1 & =0 \\
0 & 1 & 1 & 1 & 0 & 0 & =0
\end{array} \right\rvert\,+R_{1}, \bmod 2
$$

Transformed CDF formula.

$$
\left.\left.\begin{array}{ll}
(\neg a \wedge \neg f \wedge \neg d) & \vee \\
(\neg a \wedge f \wedge d) & \vee \\
(a \wedge \neg f \wedge d) & \vee \\
(a \wedge f \wedge \neg d) &
\end{array}\right) \wedge\right)
$$

P	----	--------	----	- -	--	--	--	--	-	
$\begin{aligned} & s_{0_{0}} \\ & s_{0_{1}} \\ & s_{0_{2}} \\ & s_{0_{3}} \\ & \hline \end{aligned}$	$\begin{array}{lllll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array}$	$\begin{array}{cccccccc} \hline-0 & 0 & 0 & 0 & 0 & - & 0 & 0 \\ 0 & 0 & - & 0 & 0 & 0 & 0 & - \\ 0 & -0 & 0 & - & 0 & 0 & 0 \\ 0 & 0 & 0 & - & 0 & 0 & - & 0 \end{array}$	$\begin{aligned} & -00- \\ & 0--0 \\ & 0--0 \\ & -00- \end{aligned}$	$\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 1 & 0 \end{array}$	$\left\|\begin{array}{l} -- \\ -- \\ -- \\ -- \end{array}\right\|$	$\left\lvert\, \begin{aligned} & -- \\ & -- \\ & -- \\ & -- \end{aligned}\right.$	$\begin{array}{ll} \hline 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{array}$	$\left\lvert\, \begin{aligned} & -- \\ & -- \\ & -- \\ & -- \end{aligned}\right.$	$\begin{array}{ll} 0 & 1 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{array}$	$a \bigvee f$ V $\neg d=0$
$\begin{aligned} & s_{1_{0}} \\ & s_{1} \\ & s_{1} \\ & s_{1} \\ & s_{1} \\ & s_{3} \\ & s_{1} \\ & s_{15} \\ & s_{1} \\ & s_{1} \\ & \hline \end{aligned}$	$\begin{array}{llll} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{array}$	$1 \circ \circ \circ \circ \circ \circ \circ$ - $1 \circ \circ \circ \circ \circ \circ$ - ○ $1 \circ \circ \circ \circ \circ$ - ○○ $1 \circ \circ \circ \circ$ ○○○○ $1 \circ \circ \circ$ - ○○○○ $1 \circ \circ$ - ○○○○○ $1 \circ$ - ○○○○○○ 1	$\begin{array}{lllll} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$	0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1	0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0	0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 1	0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 1 0	0 1 0 1 0 1 0 1 1 1 0 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0	$\begin{array}{lll} 0 & 1 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ \hline \end{array}$	$b \underline{\vee} f \underline{\vee} \neg c \underline{\vee} \neg d=0$
$\begin{aligned} & s_{2} 2_{0} \\ & s_{2} \\ & s_{2} \\ & s_{2} \\ & s_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & -00- \\ & 0--0 \\ & 0--0 \\ & -00- \end{aligned}$	-0 0 0 0 0 - 0 0 -0 0 0 0 0 - 0 0 - 0 - 0 0 0 0 0 0 - 0 - 0 0	$\left.\begin{array}{lllll} \hline 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array} \right\rvert\,$	$\left\|\begin{array}{l} -- \\ -- \\ -- \\ -- \end{array}\right\|$	$\left\|\begin{array}{l} -- \\ -- \\ -- \\ -- \end{array}\right\|$	$\begin{array}{lll} \hline 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 1 & 0 \end{array}$	$\begin{aligned} & -- \\ & -- \\ & -- \\ & -- \end{aligned}$	$\begin{array}{lll} 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{array}$	$\left.\begin{array}{lll} 0 & 1 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{array} \right\rvert\,$	$e \underline{\vee} \neg c \underline{\vee} \neg d=0$
$\begin{aligned} & s_{3_{0}} \\ & s_{3} \\ & s_{1} \end{aligned}$	$\left\lvert\, \begin{gathered}00-- \\ --00\end{gathered}\right.$	$\begin{gathered} 0-0--0-0 \\ -0-0-0-0- \end{gathered}$	----	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	-- --	---	--	--	--	
$\begin{array}{r} s_{4_{0}} \\ s_{4} \\ \hline \end{array}$	----	$\begin{aligned} & 00000---- \\ & ----0000 \end{aligned}$	----	--	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	--	--	--	--	$\begin{array}{r} b \\ \neg b \end{array}$
$\begin{array}{r} s_{5} 5_{0} \\ s_{5} \\ \hline \end{array}$	----	$\begin{gathered} 00----00 \\ --0000-- \end{gathered}$	$\begin{aligned} & 00-- \\ & --00 \end{aligned}$	--	--	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	--	--	--	$\begin{gathered} e \\ \neg e \end{gathered}$
$\begin{aligned} & s_{6} 6_{0} \\ & s_{6} \\ & \hline \end{aligned}$	$\begin{aligned} & 0-0- \\ & -0-0 \end{aligned}$	$\begin{aligned} & 00--00-- \\ & --00--00 \end{aligned}$	----	--	--	$--$	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	--	--	$\begin{array}{r} f \\ \neg f \end{array}$
$\begin{array}{r} { }^{s} 7_{0} \\ { }^{s_{1}} \\ \hline \end{array}$	----	$\begin{aligned} & 0-0-0-0- \\ & -0-0-0-0 \end{aligned}$	$\begin{gathered} 0-0- \\ -0-0 \end{gathered}$	--	--	--	--	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	--	$\begin{array}{r} \neg c \\ c \end{array}$
$\begin{aligned} & { }^{s_{8}}{ }^{s_{8}} \\ & { }^{2} \\ & \hline \end{aligned}$	$\begin{gathered} 0--0 \\ -00- \end{gathered}$	$\begin{aligned} & 0--0-00-0 \\ & -00-0--0 \end{aligned}$	$0-0$ -0	--	--	--	--	- -	$\begin{array}{ll} \hline 1 \circ \\ \circ \end{array}$	$\begin{array}{r} \neg d \\ d \end{array}$

Figure 45: 3 XOR Gauss example - reformulated

11. 3-Regular Bipartite Graph Problem Example

An excerpt from a propositional problem derived from a 3-regular bipartite graph[JARV] is shown to demonstrate the visual information that can be gained from analyzing a propositional problem in structural logic.

The characteristic structure is already recognizable in the 3 -state cell version in figure 46 .

P	---	---	---	---	---	---	-	---	-	---	---	-
$\begin{aligned} & s_{0_{0}} \\ & s_{0} \\ & s_{0} \\ & s_{0_{2}} \\ & \hline \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{ccc} 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\begin{aligned} & 100 \\ & 0-- \\ & 0-- \end{aligned}$	$\begin{array}{lll} \hline 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\left\lvert\, \begin{aligned} & --- \\ & --0 \\ & -0- \end{aligned}\right.$	$\begin{aligned} & --- \\ & --0 \\ & -0-- \end{aligned}$	$---\quad-$	$---$			---	
$\begin{array}{r} s_{10} \\ s_{1} \\ s_{1} \\ s_{12} \\ \hline \end{array}$	$\begin{array}{lll} 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{ccc} 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\begin{aligned} & 100 \\ & 0-- \\ & 0-- \end{aligned}$	$\left\lvert\, \begin{aligned} & --- \\ & --0 \\ & -0- \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & --- \\ & --0 \\ & -0- \end{aligned}\right.$		$\left\|\begin{array}{l} --- \\ --- \\ --- \end{array}\right\|$	$\begin{aligned} & --- \\ & --0 \\ & -0-0 \end{aligned}$	$\left\|\begin{array}{l} --- \\ --0 \\ -0- \end{array}\right\|$	--- --- ---	
$\begin{aligned} & s_{2}{ }_{2} \\ & s_{21} \\ & s_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 0-- \\ & 0-- \end{aligned}$	$\begin{array}{lll} 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{lll} 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	-		-1	$\left\|\begin{array}{l} --- \\ --- \\ --- \end{array}\right\|$	$-$	$--$		
$\begin{aligned} & s_{3_{0}} \\ & s_{3_{1}} \\ & { }^{s_{3}} \\ & \hline \end{aligned}$	$\begin{array}{lll} 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\begin{array}{lll} 1 & 0 & 0 \\ 0 & - & - \\ 0 & -- \end{array}$	$\begin{array}{llll} 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	---	\|-	$-1-$	$---$			-1	
$\begin{aligned} & s_{4_{0}} \\ & s_{4} \\ & s_{1} \\ & s_{4} \\ & \hline \end{aligned}$	$\begin{aligned} & --- \\ & --0 \\ & -0- \end{aligned}$	$\begin{aligned} & --- \\ & --0 \\ & -0- \end{aligned}$	-	$-$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{lll} 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\begin{array}{lll} \hline 1 & 0 & 0 \\ 0 & - & - \\ 0 & - & - \end{array}$	$\begin{array}{lll} 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	---	---		-
$\begin{aligned} & { }^{s_{5} 5_{0}} \\ & { }^{s_{5}} \\ & s_{5} \\ & \hline \end{aligned}$	$\begin{aligned} & --- \\ & --0 \\ & -0- \end{aligned}$	$\begin{aligned} & --- \\ & --0 \\ & -0- \end{aligned}$	--- --- ---	$-$	$\begin{array}{lll} 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\begin{array}{lll} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{lll} 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\begin{aligned} & 100 \\ & 0-- \\ & 0-- \end{aligned}$	---	---	---	-
$\begin{aligned} & { }^{s_{6} 0} \\ & s_{0} \\ & s_{1} \\ & s_{6} \\ & \hline \end{aligned}$	-				$\begin{aligned} & 100 \\ & 0-- \\ & 0-- \end{aligned}$	$\begin{array}{lll} 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{lll} 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	-	---		$\begin{aligned} & \hline- \\ & - \end{aligned}$
$\begin{aligned} & { }^{s} 7_{0} \\ & { }^{s} 7_{1} \\ & { }^{s} 7_{2} \\ & \hline \end{aligned}$					$\begin{array}{lll} 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\begin{aligned} & 100 \\ & 0-- \\ & 0-- \end{aligned}$	$\begin{array}{lll} \hline 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\begin{array}{llll} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	-	-		
$\begin{aligned} & { }^{s_{8} 8_{0}} \\ & { }^{s} 8_{1} \\ & { }^{s_{8}} \\ & \hline \end{aligned}$	$\begin{aligned} & -0- \\ & --0 \end{aligned}$	$\begin{aligned} & --- \\ & --0 \\ & -0-0 \end{aligned}$	--- --- ---	--- --- ---	--- --- ---	$\begin{aligned} & --- \\ & --- \\ & --- \end{aligned}$		\|-	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{lll} 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\begin{aligned} & 100 \\ & 0-- \\ & 0-- \end{aligned}$	$\begin{array}{lll} 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$
$\begin{array}{r} { }^{s_{9} 9_{0}} \\ { }^{s_{9}} \\ s_{9_{2}} \\ \hline \end{array}$	--- $-0-$ --0	$\begin{aligned} & --- \\ & --0 \\ & -0-0 \end{aligned}$	--- --- ---	-	$-$	$\begin{aligned} & --- \\ & --- \end{aligned}$	\square	$\left\|\begin{array}{l} --- \\ --- \\ --- \end{array}\right\|$	$\begin{array}{lll} 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{lll} 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\begin{aligned} & 100 \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & s_{10} 10_{0} \\ & s_{10} \\ & s_{10} \\ & s_{10} \end{aligned}$				--- --- ---				$\begin{aligned} & --- \\ & --- \\ & --- \end{aligned}$	$\begin{aligned} & 100 \\ & 0-- \\ & 0-- \end{aligned}$	$\begin{array}{lll} 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{lll} 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$
$\begin{aligned} & s_{11_{0}} \\ & s_{11} \\ & s_{11_{2}} \\ & \hline \end{aligned}$	-	--- --- ---	-						$\begin{array}{lll} 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\begin{aligned} & 100 \\ & 0-- \\ & 0-- \end{aligned}$	$\begin{array}{lll} 0 & - & - \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\begin{array}{lll} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$

Figure 46: 3-state cell satoku matrix for bipartite problem (excerpt)

The 4-state cell satoku matrix shown in figure 47 was derived from merging the 3 -state cells and reveals the XOR-structure of the problem entirely.

P	---	--	----	- - -	--	---
$\begin{aligned} & s_{0_{0}} \\ & s_{0_{1}} \\ & s_{0_{2}} \\ & s_{0_{3}} \end{aligned}$	$\begin{array}{llll} \hline 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array}$	$\begin{array}{lll} -- & 0 & 0 \\ -- & 0 & 0 \\ 0 & 0 & -- \\ 0 & 0 & -- \end{array}$	$\left\|\begin{array}{c} -0-0 \\ 0-0- \\ -0-0 \\ 0-0- \end{array}\right\|$		$\begin{aligned} & -0-0 \\ & 0-0- \\ & 0-0- \\ & -0-0 \end{aligned}$	
$\begin{aligned} & s_{1_{0}} \\ & s_{1_{1}} \\ & s_{1_{2}} \\ & s_{1_{3}} \end{aligned}$	$\begin{aligned} & --00 \\ & --00 \\ & 00-- \\ & 00-- \end{aligned}$	$\begin{array}{llll} \hline 1 \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array}$	---- ---- ----			
$\begin{aligned} & s_{2_{0}} \\ & s_{2_{1}} \\ & s_{2_{2}} \\ & s_{2_{3}} \end{aligned}$	$\begin{aligned} & -0-0 \\ & 0-0- \\ & -0-0 \\ & 0-0- \end{aligned}$		$\begin{array}{llll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array}$	$\begin{array}{lll} - & -0 & 0 \\ -- & 0 & 0 \\ 0 & 0 & -- \\ 0 & 0 & -- \end{array}$		
$\begin{aligned} & s_{3_{0}} \\ & s_{3_{1}} \\ & s_{3_{2}} \\ & s_{3_{3}} \end{aligned}$			$\left\lvert\, \begin{array}{ccc} - & - & 0 \end{array} 0\right.$	$1 \circ \circ \circ$ - $1 \circ \circ$ ○○ $1 \circ$ $\circ \circ \circ 1$		
$\begin{aligned} & s_{4_{0}} \\ & s_{4_{1}} \\ & s_{4_{2}} \\ & s_{4_{3}} \end{aligned}$	$\begin{aligned} & \hline-00- \\ & 0--0 \\ & -00- \\ & 0--0 \end{aligned}$				$\begin{array}{lllll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array}$	$\begin{array}{\|cccc} - & - & 0 & 0 \\ - & - & 0 & 0 \\ 0 & 0 & - & - \\ 0 & 0 & -- & - \end{array}$
$\begin{aligned} & s_{5_{0}} \\ & s_{5_{1}} \\ & s_{5_{2}} \\ & s_{5_{3}} \end{aligned}$	---- ---- ---- ----			---- ---- ---- ----	$\begin{array}{llll} - & 0 & 0 \\ -- & 0 & 0 \\ 0 & 0 & -- \\ 0 & 0 & -- \end{array}$	$\begin{array}{llll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array}$

Figure 47: 4-state cell satoku matrix for bipartite problem (excerpt)

Note: It is possible to reconstruct the linear equation system from this information with simple heuristics. Even obfuscated versions of such problems can be de-obfuscated. A major advantage of structural logic is its independence from encoding for these types of problems, while regular SAT-solvers with XOR-clause-detection for Gauss-elimination can easily be fooled (see section 13).

12. Equivalence Reasoning

A simpler way to solve XOR problems uses a proof that 2-state splitting of a satoku matrix produces isomorphic core problems. In that case it is sufficient to examine only one of the isomorphic alternatives.

Figure 48 shows an example of a sutiable XOR problem.

P	----	----	-												
$\begin{aligned} & { }^{{ }^{0_{0}}} \\ & s_{0} \\ & s_{0} \\ & s_{0}{ }_{2} \\ & s_{0} 0_{3} \\ & \hline \end{aligned}$	$\begin{array}{\|lllll} \hline 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & 0 \\ \circ & \circ & \circ & 1 \end{array}$	$\begin{array}{\|llll\|} \hline-- & -0 & 0 \\ - & - & 0 & 0 \\ 0 & 0 & - & - \\ 0 & 0 & -- \\ \hline \end{array}$		$--$	$\left\|\begin{array}{cccc}-- & -0 & 0 \\ 0 & 0 & - \\ 0 & 0 & - \\ - & - & - & 0\end{array}\right\|$	-	$\left.\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 1 & 0 \end{array} \right\rvert\,$	$\left.\begin{array}{\|ll\|} \hline 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{array} \right\rvert\,$	$\begin{array}{l\|} \hline-- \\ -- \\ -- \end{array}$	$\begin{array}{\|ll\|} \hline & 0 \end{array} 1$	--	$--1$	$--$	-- -- -- --	
$\begin{aligned} & { }^{s_{1}} \\ & s_{1} \\ & \hline \end{aligned}$		$\begin{array}{lllll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \\ \hline \end{array}$				$\left.\begin{array}{\|llll\|} \hline-- & 0 & 0 \\ 0 & 0 & - & - \\ 0 & 0 & - & - \\ - & -0 & 0 \end{array} \right\rvert\,$	$\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 1 & 0 \end{array}$	$\begin{array}{\|l\|} \hline-- \\ -- \\ -- \end{array}$	$\begin{array}{\|ll\|} \hline 0 & \left.\begin{array}{ll} 1 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{array} \right\rvert\, \\ \hline \end{array}$	$\begin{aligned} & -- \\ & -- \end{aligned}$	$\begin{array}{\|ll\|} \hline 0 & 1 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ \hline \end{array}$	$-$	$\left\|\begin{array}{l} -- \\ -- \\ -- \\ -- \end{array}\right\|$	$\left\lvert\, \begin{aligned} & -- \\ & -- \\ & -- \\ & -- \end{aligned}\right.$	$\begin{aligned} & -- \\ & -- \\ & -- \\ & -- \end{aligned}$
$\begin{aligned} & s_{2} 2_{0} \\ & s_{2} \\ & s_{2} \\ & s_{2} \\ & s_{2} \end{aligned}$	$\begin{aligned} & \hline-0-0 \\ & -0-0 \\ & 0-0- \\ & 0-0-0 \end{aligned}$		$\begin{array}{lllll} \hline 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array}$	$\left\|\begin{array}{c} -0-0 \\ 0-0-0 \\ 0-0- \\ -0-0 \end{array}\right\|$	$\left\|\begin{array}{ccc} -0 & -0 & 0 \\ 0 & -0 & - \\ -0 & -0 \\ 0 & -0 & -0 \end{array}\right\|$		--	$\left.\begin{array}{\|l\|l\|} \hline 0 & 1 \\ 0 & 1 \\ 1 & 1 \\ 1 & 0 \\ 1 & 0 \end{array} \right\rvert\,$	$\begin{aligned} & -- \\ & -- \end{aligned}$	$\left\lvert\, \begin{aligned} & -- \\ & -- \\ & -- \\ & -- \end{aligned}\right.$	-	$\begin{array}{lll} \hline 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{array}$	$\left.\begin{array}{\|l\|l\|} \hline 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{array} \right\rvert\,$	-	$\left\lvert\, \begin{aligned} & -- \\ & -- \\ & -- \\ & -- \end{aligned}\right.$
$\begin{aligned} & s_{3_{0}} \\ & s_{3_{1}} \\ & s_{3} \\ & s_{2} \end{aligned}$		$\begin{aligned} & -0-0 \\ & -0-0 \\ & 0-0- \\ & 0-0-0 \end{aligned}$		$\begin{array}{lllll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline-0-0 \\ 0-0- \\ 0-0- \\ -0-0 \\ \hline \end{array}$	$-$	$\begin{aligned} & -- \\ & -- \\ & -- \end{aligned}$	$\left.\begin{array}{ll} \hline 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 1 & 0 \end{array} \right\rvert\,$	$--$	$\left\lvert\, \begin{aligned} & -- \\ & -- \\ & -- \\ & -- \end{aligned}\right.$	$\begin{aligned} & -- \\ & -- \\ & -- \end{aligned}$	$\begin{array}{ll} \hline 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{lll} \hline 0 & 1 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{array}$	$--$
$\begin{aligned} & s_{4} 4_{0} \\ & s_{4} \\ & { }^{s_{4}} 2 \\ & { }^{s_{4}} \end{aligned}$			$\left\|\begin{array}{ccc} -0 & -0 \\ 0 & -0 & - \\ -0 & -0 \\ 0 & -0 & - \end{array}\right\|$		$\left.\begin{array}{\|llll} \hline 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right\rvert\,$	$\left\|\begin{array}{ccc} 0 & - & -0 \\ -0 & 0 & - \\ -0 & 0 & - \\ 0 & - & -0 \end{array}\right\|$	$-$	$\begin{aligned} & \hline-- \\ & -- \end{aligned}$	--	$\begin{array}{lll} \hline 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 1 & 0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-- \\ -- \\ \hline \end{array}$	$\left.\begin{array}{\|ll\|} \hline 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{array} \right\rvert\,$	$\begin{array}{\|l\|} \hline-- \\ -- \\ \hline \end{array}$	$-$	$\begin{array}{\|ll\|} \hline \begin{array}{ll} 0 & 1 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ \hline \end{array} \\ \hline \end{array}$
$\begin{aligned} & s_{5} 5_{0} \\ & s_{5} \\ & s_{5} \\ & s_{5} \\ & s_{5} \end{aligned}$	-	$\begin{array}{\|ccc} \hline-0 & 0 & - \\ -0 & 0 & 0 \\ 0 & - & 0 \\ 0 & - & 0 \end{array}$	-	$\begin{array}{\|ccc\|} \hline-0 & 0 & - \\ 0 & - & -0 \\ -0 & 0 & - \\ 0 & - & - \\ \hline \end{array}$	$\left\|\begin{array}{ccc} 0 & - & -0 \\ -0 & 0 & - \\ -0 & 0 & - \\ 0 & - & - \\ 0 \end{array}\right\|$	$\begin{array}{\|lllll} \hline 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & 0 \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array}$	$-$	--	$\left\|\begin{array}{l} -- \\ -- \\ -- \end{array}\right\|$	-	$\begin{array}{lll} \hline 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 1 & 0 \\ \hline \end{array}$	$\begin{aligned} & \hline-- \\ & -- \\ & -- \end{aligned}$	$\begin{aligned} & -- \\ & -- \\ & -- \end{aligned}$	$\begin{array}{lll} \hline 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{\|ll\|} \hline 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ \hline \end{array}$
$\begin{aligned} & { }^{s_{6}}{ }_{0} \\ & { }_{6} 6_{1} \end{aligned}$	00 $0--$ --00	00-- $\begin{gathered}0 \\ --00\end{gathered}$	----		----	----	$\begin{array}{lll} \hline 1 & 1 & 0 \\ 0 & 1 \end{array}$	--				--	-		
$\begin{aligned} & { }^{s_{7}} 0 \\ & { }^{3} 7_{1} \\ & \hline \end{aligned}$	$\begin{gathered} 0-0- \\ -0-0 \end{gathered}$	-----	$\left\|\begin{array}{ccc} 0 & 0 & - \\ --0 & 0 \end{array}\right\|$	-----			$\begin{aligned} & -- \\ & -- \end{aligned}$	$\begin{array}{lll} \hline 1 & 0 \\ 0 & 1 \end{array}$	--		--	$\begin{aligned} & -- \\ & -- \end{aligned}$	--		
$\begin{aligned} & s_{8} 8_{0} \\ & s_{8} \\ & \hline \end{aligned}$		- $\begin{gathered}0-0- \\ -0-0\end{gathered}$		0 $0--$			--	$--$	$\begin{array}{lll} \hline 1 & 1 & 0 \\ 0 & 1 \end{array}$		$\begin{aligned} & -- \\ & -- \end{aligned}$	$--$	$\left\lvert\, \begin{aligned} & -- \\ & -- \end{aligned}\right.$	--	
$\begin{aligned} & { }^{s_{9}} 0 \\ & { }^{s_{9}} 1 \\ & \hline \end{aligned}$	$\left\lvert\, \begin{gathered}0--0 \\ -00-\end{gathered}\right.$				O0--		--	--	$--$	$\begin{aligned} & 1 \circ \\ & \hline 1 \end{aligned}$	$\begin{aligned} & -- \\ & -- \end{aligned}$	$--1$	--	--	
$\begin{aligned} & s_{10_{0}} \\ & s_{10_{1}} \end{aligned}$	--	0-- 0	-----	----	----	$\left\|\begin{array}{ccc} 0 & 0 & -- \\ --0 & 0 \end{array}\right\|$	--	--	---	$--$	$\begin{aligned} & \hline 1 \circ \\ & \circ 1 \end{aligned}$	$--$	--	---	
$\begin{aligned} & s_{11_{0}} \\ & s_{11_{1}} \\ & \hline \end{aligned}$	-	------	$\left\|\begin{array}{cc} 0-0 & - \\ -0 & -0 \end{array}\right\|$	-----	$\left\|\begin{array}{cc} 0-0 & - \\ -0 & -0 \end{array}\right\|$	-----	--	--	---	---	-1	$\begin{array}{lll} 1 & \circ \\ 0 & 1 \end{array}$	$\begin{aligned} & -- \\ & -- \end{aligned}$	--	
$\begin{aligned} & s_{12_{0}} \\ & s_{12_{1}} \\ & \hline \end{aligned}$	-----		$\begin{gathered} 0--0 \\ -00- \end{gathered}$	$\begin{aligned} & 0-0- \\ & -0-0 \end{aligned}$	-----		--	--	--	--	--	$--$	$\begin{aligned} & \hline 1 \circ \\ & \circ 1 \end{aligned}$	--	---
$\begin{aligned} & s_{13_{0}} \\ & s_{13_{1}} \end{aligned}$	----		-----	$0-0-0$ $-000-$	----	$\begin{array}{\|c\|c\|} \hline 0-0-0 \\ -0-0 \\ \hline \end{array}$	--	--	--	$\begin{aligned} & -- \\ & -- \end{aligned}$	$\mid-$	$\left\lvert\, \begin{aligned} & -- \\ & -- \end{aligned}\right.$	-1	$\begin{array}{ll} \hline 1 \circ \\ \circ & 0 \\ \hline \end{array}$	$--$
$\begin{aligned} & \hline s_{14_{0}} \\ & s_{14_{1}} \\ & \hline \end{aligned}$	--	-	----	----	$\begin{array}{\|c\|c\|c\|} \hline 0--0 \\ -0 & 0 & - \end{array}$	$\left\|\begin{array}{l}-00 \\ 0-0\end{array}\right\|$	--	--	--	---	-	-	-	-	$\begin{array}{\|ll\|} \hline 1 & \circ \\ 0 & 1 \\ \hline \end{array}$

Figure 48: XOR problem for equivalence reasoning

In figure 49 a the first 2 -state split is performed by disabling state rows $s_{0_{0}}$ and $s_{0_{2}}$. the resulting consolidated core matrix is shown in figure 49b.

P	0-0-	----	00--	----	----	----
${ }^{s} 0_{0}$	$\bigcirc \circ \circ \circ$	0000	0000	00000	0000	0000
$s_{0}{ }_{1}$	$\bigcirc 1 \circ \circ$	--00	00--		$00-$	
$s^{0_{2}}$	$\bigcirc \circ \bigcirc \circ$	0000	0000	0000	0000	0000
$s_{0}{ }_{3}$	$\bigcirc \circ \circ 1$	00--	00--	----	--00	
${ }^{s} 1_{0}$	0100	$1 \circ \circ \circ$	$00--$		$00--$	--00
$s_{1}{ }_{1}$	0100	$\bigcirc 1 \circ \circ$	$00--$	00--	$00--$	00--
s_{12}	0001	$\bigcirc \circ 1 \circ$	$00--$	--00	--000	$00--$
s_{13}	0001	$\bigcirc \circ \circ 1$	00--	00--	$--00$	--00
$s_{2}{ }_{0}$	0000	0000	$\bigcirc \circ \circ \circ$	0000	0000	0000
s_{2}	0000	0000	$\bigcirc \circ \circ \circ$	00000	00000	0000
s_{2}	$0-0-$		$\bigcirc \circ 1 \circ$	0-0-	$-0-0$	----
${ }^{2_{2}}$	0-0-		- ○ ○ 1	-0-0	0-0-	
${ }^{s} 3_{0}$	$0-0-$	-0-0	00001	$1 \circ \circ \circ$	0-0-	-0-0
$s_{3}{ }_{1}$	$0-0-$	$-0-0$	0010	$\bigcirc 1 \circ \circ$	-0-0	0-0-
$s_{3}{ }_{2}$	$0-0-$	0-0-	0001	$\bigcirc \circ 1 \circ$	0-0-	0-0-
${ }^{s_{3}}$	0-0-	0-0-	0010	$\bigcirc \circ \circ 1$	-0-0	-0-0
${ }^{s} 40$	00001	00--	00010	$0-0-$	1000	$0--0$
$s_{4}{ }_{1}$	0001	$00--$	00001	-0-0	$\bigcirc 1 \circ \circ$	- 000
$s_{4}{ }_{2}$	0100	--00	0010	$0-0-$	$\bigcirc \circ 10$	$-00-$
$s_{4}{ }_{3}$	0100	--00	0001	$-0-0$	$\bigcirc \circ \circ 1$	$0--0$
${ }^{s} 5_{0}$	0-0-	$-00-$	$00--$	- 000	$0--0$	$10 \circ 0$
${ }^{5} 5_{1}$	0-0-	- $000-$	$00--$	$0-0$	$-00-$	$\bigcirc 1 \circ \circ$
${ }^{5} 5_{2}$	$0-0-$	$0-0$	$000-$	-0 $00-$	-00-	$\bigcirc \circ 10$
${ }^{s_{5}}$	$0-0-$	$0--0$	$00--$	$0--0$	0--0	$\bigcirc \circ \circ 1$

P		----		
$\begin{aligned} & { }^{s_{0} 0_{0}} \\ & s_{0} \\ & s_{1} \\ & s_{0}{ }_{2} \\ & s_{0} 0_{3} \\ & \hline \end{aligned}$	$\begin{array}{llll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array}$	$\begin{array}{cccc} - & - & 0 & 0 \\ 0 & 0 & - & - \\ - & - & 0 & 0 \\ 0 & 0 & - & - \end{array}$	$\left.\begin{array}{\|cccc} \hline 0 & 0 & - & - \\ 0 & 0 & - & - \\ - & - & 0 & 0 \\ - & - & 0 & 0 \end{array} \right\rvert\,$	$\begin{array}{cccc} - & - & 0 & 0 \\ 0 & 0 & - & - \\ 0 & 0 & - & - \\ - & - & 0 & 0 \end{array}$
$\begin{aligned} & s_{10} \\ & s_{1} \\ & s_{1} \\ & s_{1} \\ & s_{1} \end{aligned}$	$\begin{gathered} -0-0 \\ -0-0 \\ 0-0- \\ 0-0- \end{gathered}$	$\left.\begin{array}{llll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array} \right\rvert\,$	$\begin{array}{\|c\|} \hline 0-0- \\ -0-0 \\ 0-0- \\ -0-0 \end{array}$	$\left.\begin{array}{\|c} -0-0 \\ 0-0- \\ 0-0- \\ -0-0 \end{array} \right\rvert\,$
$\begin{aligned} & s_{2} 2_{0} \\ & s_{2} \\ & s_{2} \\ & s_{2} \\ & s_{2} \\ & \hline \end{aligned}$		$\left.\begin{array}{\|c\|} \hline 0-0-0 \\ -0-0 \\ 0-0- \\ -0-0 \end{array} \right\rvert\,$	$\begin{array}{llll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array}$	$\begin{array}{ccc} 0 & --0 \\ -0 & 0 & - \\ -0 & 0 & - \\ 0 & --0 \end{array}$
$\begin{aligned} & s_{3_{0}} \\ & s_{3} \\ & s_{3} \\ & s_{3} \\ & s_{3} \\ & \hline \end{aligned}$	$\begin{array}{lll} -0 & 0 & - \\ -0 & 0 & - \\ 0 & - & - \\ 0 & - & 0 \end{array}$	$\begin{array}{\|ccc\|} \hline-0 & 0 & - \\ 0 & - & - \\ -0 & 0 \\ -0 & 0 & - \\ 0 & - & - \\ \hline \end{array}$	$\begin{array}{\|cccc} \hline 0 & - & -0 \\ -0 & 0 & - \\ -0 & 0 & - \\ 0 & - & - & 0 \end{array}$	$\begin{array}{llll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array}$

(b) satoku matrix consolidated
(a) State rows $s_{0_{0}}$ and $s_{0_{2}}$ disabled

Figure 49: Equivalence reasoning, first 2-state split

Figure 50 shows that an intra-cell transformation of state rows in the core satoku matrix, spanning cells $c_{0}-c_{3}$, derived from the alternate 2 -state split produces a satoku matrix, spanning cells $c_{4}-c_{7}$ which is isomorphic to the core satoku matrix resulting from the first 2 -state split.

P								
s_{0}	$1 \circ \circ \circ$	--00	--00	--00	1000	--00	00 -	$--00$
s_{0}	- $1 \circ \circ$	$00--$	--00	$00--$	0100	$00--$	$00-$	$00--$
$s_{0_{2}}$	$\bigcirc \circ 1 \circ$	--0 0	00--	00--	0010	--0 0	--0 0	$00--$
$s_{0_{3}}$	$\bigcirc \circ \circ 1$	00	00	--00	0001	00	- -00	$--00$
s_{10}	-0-0	$1 \circ \circ \circ$	-0-0	-0-0	-0-0	1000	0-0-	-0-0
$s_{1_{1}}$	-0-0	$\bigcirc 10 \circ$	0-0-	0-0-	-0-0	0100	-0-0	0-0-
s_{12}	0-0-	$\bigcirc \circ 1 \circ$	-0-0	0-0-	0-0-	0010	0-0-	0-0-
s_{13}	0-0-	$\bigcirc \circ \circ 1$	0-0-	$-0-0$	0-0-	0001	$-0-0$	-0-0
s_{20}	--0	-0-0		0--0	--00	-0-0	00	$0--0$
s_{21}	--00	0-0-	\bigcirc	-00-	--00	0-0-	0010	-00-
$s_{2}{ }_{2}$	00	-0-0	$\bigcirc \circ 1 \circ$	-00-	$00--$	-0-0	0100	$00-$
s_{23}	00	0-0-	\bigcirc	$0--0$	00	0-0-	1000	0--0
s_{30}	-00-	-00-	0--	1	-	-00-	$0--0$	0
s_{3}	-00-	0--0	-00-	$\bigcirc 1 \circ \circ$	-00-	0--0	- $000-$	0100
$s_{3}{ }_{2}$	$0--0$	-00-	- $000-$	$\bigcirc \circ 1 \circ$	0--0	-00-	-00-	0010
s_{33}	0--0	0--0	0--0	$\bigcirc \circ \circ 1$	$0--0$	$0--0$	0--0	0001
$s_{4}{ }_{0}$	1000	--00	--0 0	--00	$1 \circ \circ \circ$	--0		--
$s_{4}{ }_{1}$	0100	00--	--00	0	- 10	$00--$	$00-$	$00-$
$s_{4_{2}}$	0010	--	00	00	$\bigcirc \circ 1$	--0 0	-00	$00--$
s_{43}	0001	0	00	--00	$\bigcirc \circ \circ 1$	$00--$	$--00$	$--00$
S_{50}	$-0-0$	1000	-0-0	-0-	-0-0	$1 \circ \circ \circ$	0-0-	0-0
s_{51}	-0-0	0100	0-0-	0-0-	-0-0	$\bigcirc 1 \circ \circ$	-0-0	0-0-
S_{5}	0-0-	0010	-0-0	0-0-	0-0-	$\bigcirc \circ 1 \circ$	0-0-	$0-0-$
s_{53}	$0-0-$	0001	0-0-	$-0-0$	$0-0-$	$\bigcirc \circ \circ 1$	-0-0	-0-0
S_{60}	00--	0-0-	0001	$0--0$				$0--0$
s_{61}	$00--$	-0-0	0010	-00-	$00--$	-0-0	$\bigcirc 1 \circ \circ$	- 000
$s_{6}{ }_{2}$	--00	0-0-	0100	-00-	--00	0-0-	$\bigcirc \circ 1 \circ$	-00-
s_{63}	--00	-0-0	1000	$0--0$	--00	-0-0	$\bigcirc \circ \circ 1$	$0--0$
${ }^{7_{0}}$	-00-	-00-	$0--0$	1000	-00-	-00-	$0--0$	$1 \circ \circ \circ$
s_{1}	$-00-$	$0--0$	-00-	0100	-00-	0--0	-00-	$\bigcirc 1 \circ \circ$
s_{7}	$0--0$	-00-	-00-	0010	0--0	-00-	-00-	$\bigcirc \circ 1 \circ$
s_{7}	0--0	0--0	0--0	0001	$0--0$	$0--0$	$0--0$	$\bigcirc \circ \circ 1$

Figure 50: Equivalence reasoning, alternate 2-state split transformed

13. Construction of Desirable Encodings

Some SAT-solvers employ algorithms to detect XOR-clauses for Gaussian elminiation. However, when a propositional CNF problem is reencoded with direct encoding (especially, when leaving out the at-most-one constraints), the XOR structure is no longer detected.
In this case, structural logic can be used to construct a more suitable CNF encoding, that allows a SAT-solver to choose an optimal strategy.

The principle is shown as full proof with an 8-clause excerpt from a larger 3-regular bipartite graph problem (figure 51), mapped from the CNF formula in direct encoding:

$(a \vee b \vee c \vee d)$	\wedge
$(\quad e \vee f \vee g \vee h)$	\wedge
$(\neg a \vee \neg b) \wedge(\neg a \vee \neg c) \wedge(\neg a \vee \neg d)$	\wedge
$(\neg b \vee \neg c) \wedge(\neg b \vee \neg d) \wedge(\neg c \vee \neg d)$	\wedge
$(\neg e \vee \neg f) \wedge(\neg e \vee \neg g) \wedge(\neg e \vee \neg h)$	\wedge
$(\neg f \vee \neg g) \wedge(\neg f \vee \neg h) \wedge(\neg g \vee \neg h)$	\wedge
$(\neg a \vee \neg g) \wedge(\neg a \vee \neg h)$	\wedge
$(\neg b \vee \neg g) \wedge(\neg b \vee \neg h)$	\wedge
$(\neg c \vee \neg e) \wedge(\neg c \vee \neg f)$	
$(\neg d \vee \neg e) \wedge(\neg d \vee \neg f)$	

P	- -	----
s_{0}	$1 \circ \circ \circ$	$--00$
s_{01}	$\bigcirc 1 \circ \circ$	--00
$S_{0_{2}}$	$\bigcirc \circ 1 \circ$	00--
s_{0}	$\bigcirc \circ \circ 1$	00--
s_{10}	$--00$	$1 \circ \circ \circ$
$s_{1_{1}}$	$--00$	$\bigcirc 1 \circ \circ$
$s_{1_{2}}$	00--	$\bigcirc \circ 1 \circ$
s_{13}	00--	$\bigcirc \circ \circ 1$

Figure 51: Propositional XOR and graph theoretic choice

Any 4-state cell in a satoku matrix can be represented by a 3 -variable XOR. This has been done in figure 52 by adding the appropriate variable and DNF representations.
Note that the corresponding CNF encoding does not yet correctly produce the original satoku matrix, since the conflict relationships between the cells are not encoded.

P	----	----				--		--
s_{0}	$1 \circ \circ \circ$	--00	10	10	10	--		
s_{01}	$\bigcirc 1 \circ \circ$	--00	10	01	01		--	
$s_{0_{2}}$	$\bigcirc \circ 1 \circ$	00--	01	10	01			
s_{0}	$\bigcirc \circ \circ 1$	$00--$	01	01	10	--	--	--
s_{10}	--00	$1 \circ \circ \circ$	--	--		10	0	10
s_{11}	--00	$\bigcirc 1 \circ \circ$		--	--	10	01	01
s_{12}	00--	$\bigcirc \circ 1 \circ$	--	--	--	01	10	01
s_{13}	00--	$\bigcirc \circ \circ 1$				01	01	10
s_{20}	--00	----	10		-	--	--	--
s_{21}	00--	----	- 1	--	--		--	--
s_{30}	-0-0			1				
s_{31}	0-0-		-	-1				
	-00-		--		$1 \circ$		--	--
s_{41}	0--0			-	- 1			--
s_{50}		--00	--	--	--	10	-	-
s_{51}	----	$00--$	--			- 1		--
$s_{6}{ }_{0}$		-0-0	--	--	--	--	10	--
s_{61}		0-0-					-1	--
s_{70}	-	-00-	- -	-	--	-	-	$1 \circ$
$s_{7_{1}}$	----	0--0	--	--	--	--	--	-1

Figure 52: XOR/choice: Preliminary XOR variables

Single choice 2-state cells (at least one/at most one encoding) have been added in figure 53. These states correctly determine the original 4 -state cells.

P	-		-	--	--	--	--	--		--	--	--	--	--		--
$\begin{aligned} & s_{s_{0}} \\ & s_{0} \\ & s_{0} \\ & s_{0} \\ & s_{0} \end{aligned}$	$\left.\begin{array}{llll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array} \right\rvert\,$		$\begin{array}{ll} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\left.\begin{array}{\|ll\|} \hline 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array} \right\rvert\,$	$\left.\begin{array}{lll} 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{array} \right\rvert\,$	$-$	$\begin{aligned} & -- \\ & -- \\ & -- \end{aligned}$	$\begin{aligned} & -- \\ & -- \\ & -- \end{aligned}$	$\begin{array}{ll} \hline 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{lll} 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 \end{array}$	$\begin{array}{\|l\|l\|} \hline \left.\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array} \right\rvert\, \\ \hline \end{array}$	$\begin{array}{ll} \hline & 1 \\ 0 & 1 \\ 0 & 1 \\ 1 & 1 \end{array}$	$\begin{array}{\|l\|l\|} \hline--- \\ -- \\ 0 & 1 \\ 0 & 1 \\ \hline \end{array}$	$\left.\begin{array}{\|c\|} \hline-- \\ -- \\ 0 \\ 0 \\ 0 \end{array} \right\rvert\,$	$\left\|\begin{array}{ll} \hline 0 & 1 \\ 0 & 1 \\ -1 \end{array}\right\|$	0 1 0 1 ---
$\begin{aligned} & s_{1} 1_{0} \\ & s_{1} \\ & s_{1} \\ & s_{1} \\ & s_{3} \end{aligned}$		$\left.\begin{array}{\|llll\|} \hline 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & 0 \\ \circ & \circ & 1 & 0 \\ \circ & \circ & \circ & 1 \end{array} \right\rvert\,$	$\begin{aligned} & \text {-- } \end{aligned}$		$-$	$\left.\begin{array}{\|\|ll\|} \hline 1 & 1 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array} \right\rvert\,$	$\begin{array}{\|ll\|} \hline 1 & \begin{array}{ll} 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{array} \\ \hline \end{array}$	$\left.\begin{array}{\|ll\|} \hline 1 & 1 \\ 0 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{array} \right\rvert\,$	--- -- 0 1 0 1	$-l_{1}$ - - 0 1 0 1 0 1	$\begin{array}{lll} \hline 0 & 1 \\ 0 & 1 \\ -1 \\ - & - \\ \hline \end{array}$	$\begin{array}{\|ll\|} \hline 0 & 1 \\ 0 & 1 \\ - & - \\ -- \end{array}$	$\begin{array}{\|ll\|} \hline 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{\|ll\|} \hline \begin{array}{lll} 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ \hline \hline \end{array} \\ \hline \end{array}$	$\left.\begin{array}{\|ll\|} \hline 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array} \right\rvert\,$	$\begin{array}{\|ll\|} \hline \begin{array}{lll} 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ \hline \end{array} \\ \hline \end{array}$
$\begin{aligned} & \hline s_{2_{0}} \\ & s_{2} \\ & \hline \end{aligned}$			$\begin{aligned} & \hline 1 \circ \\ & \circ 1 \end{aligned}$	$\begin{aligned} & -- \\ & -- \end{aligned}$			$\begin{aligned} & -- \\ & -- \end{aligned}$		$\begin{gathered} -- \\ 01 \end{gathered}$	$\begin{array}{\|c\|} \hline-- \\ 0 \end{array}$	$\begin{aligned} & \hline 01 \\ & -\quad \end{aligned}$					
$\begin{aligned} & \stackrel{s}{3}_{3} \\ & s_{3} \\ & \hline \end{aligned}$	$-0-0$ $0-0-$		--	$\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}$		---	---	---	$\begin{aligned} & -- \\ & 0 \\ & \hline \end{aligned}$	01	$\begin{aligned} & \hline-- \\ & 0 \\ & \hline \end{aligned}$	01	--			
$\begin{aligned} & s_{4_{0}} \\ & s_{4_{1}} \\ & \hline \end{aligned}$	-00 $0-0$				$\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}$	-	---		$\begin{aligned} & --- \\ & 0 \end{aligned}$	01	0 1	--				
$\begin{aligned} & s_{5_{0}} \\ & s_{5_{1}} \\ & \hline \end{aligned}$	-----	---00 0	--	--	---	$\begin{array}{ll\|l\|} \hline 1 & 0 \\ \circ & 1 \end{array}$	-		$\begin{aligned} & -- \\ & -- \end{aligned}$	-	-	$\begin{aligned} & -- \\ & -- \\ & \hline \end{aligned}$	$\left\lvert\, \begin{array}{ll} --- \\ 0 & 1 \end{array}\right.$	$\begin{array}{\|c\|} \hline-- \\ 0 \\ \hline \end{array}$	01	01
$\begin{aligned} & s_{6} 6_{0} \\ & { }^{6} 6_{1} \\ & \hline \end{aligned}$	----	$\left\|\begin{array}{c} -0-0 \\ 0-0-0 \end{array}\right\|$	--	---		--	$\begin{array}{ll\|} \hline 10 \\ \hline & 1 \\ 0 & 1 \end{array}$	--	-		--		$\begin{array}{\|l\|} \hline-- \\ 0 \\ \hline \end{array}$	$\begin{array}{ll} \hline 01 \\ -1 \end{array}$	$\left\|\begin{array}{cc} -\overline{-} \\ 0 & 1 \end{array}\right\|$	018
$\begin{array}{r} { }^{{ }^{7_{0}}} \\ { }^{7_{1}} \\ \hline \end{array}$		- 0 - $0-0$	--	--			--	$\begin{array}{ll} \hline 1 \circ \\ \circ \end{array}$	--		-		$\left\lvert\, \begin{array}{cc} - & - \\ 0 & 1 \end{array}\right.$	$\begin{array}{l\|l\|} \hline 01 \\ -1 \end{array}$	01	- -1 0
$\begin{aligned} & { }^{s} 8_{0} \\ & s_{8} \\ & \hline \end{aligned}$	10 0 0 0 - 0	--00	10	10	10	--	---	---	$\begin{array}{ll\|} \hline 1 & 0 \\ 0 & 1 \end{array}$	01	01	01	---	\|--	01	01
$\begin{aligned} & { }^{s_{9}}{ }_{0} \\ & s_{9} \\ & \hline \end{aligned}$		--0	10	01	01	--	--	--	01	$\begin{array}{ll} 1 \circ \\ \circ & 1 \end{array}$	01	01			01	01
$\begin{aligned} & \hline s_{10_{0}} \\ & s_{10_{1}} \\ & \hline \end{aligned}$		$00-$	01	10	01	--	--	---	01	01	$\begin{array}{lll} \hline 1 & \circ \\ \circ & 1 \\ \hline \end{array}$	01	01	01	--	---
$\begin{aligned} & \hline s_{11_{0}} \\ & s_{11_{1}} \\ & \hline \end{aligned}$	0001	00	01	01	10	--	--	---	$\overline{01}$	01	$\begin{aligned} & \hline 01 \\ & -\quad \end{aligned}$	$\begin{array}{ll} \hline 1 \circ \\ 0 & 1 \end{array}$	$\overline{01}$	01	--	--
$\begin{aligned} & s_{12_{0}} \\ & s_{12}{ }_{1} \\ & \hline \end{aligned}$	--00	10000 $0---1$	\| --	--	--	10	10	10	$--$	$\overline{--}$	01	01	$\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}$	01	01	01
$\begin{aligned} & s_{13_{0}} \\ & s_{13} \\ & \hline \end{aligned}$	--00	$\left\lvert\, \begin{array}{cccc}0 & 1 & 0 & 0 \\ -0 & - & -\end{array}\right.$	--	--	--	10	01	01	$--$	--	01	01	01	$\begin{array}{ll\|} \hline 1 \circ \\ \circ & 1 \\ \hline \end{array}$	01	01
$\begin{aligned} & s_{14_{0}} \\ & s_{14_{1}} \end{aligned}$	00--	$\left\lvert\, \begin{array}{cccc}0 & 0 & 1 & 0 \\ --0 & - & -\end{array}\right.$	--	-	---	01	10	01	01	01	--	- -	01	01	$\left.\begin{array}{\|ll\|} \hline 1 & \circ \\ 0 & 1 \end{array} \right\rvert\,$	01
$\begin{aligned} & s_{15_{0}} \\ & s_{15_{1}} \\ & \hline \end{aligned}$	00 --	0001	--	--	--	01	01	10	01	01	--	--	01	01	01	$\begin{array}{ll}1 & \circ \\ \circ & 1\end{array}$

Figure 53: XOR/choice: single choice variables (at-most-one)

In figure 54 , decisions for merging cells $c_{88}, c_{12_{12}}$.

P	----	----	--	--	--	--	--	--	--	-	--	-	-	--	--	- -	----
$\begin{aligned} & s_{0_{0}} \\ & s_{0_{1}} \\ & s_{0} \\ & s_{2} \\ & s_{0_{3}} \\ & \hline \end{aligned}$	$\begin{array}{llll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array}$	$\begin{array}{llll\|} \hline- & - & 0 & 0 \\ - & - & 0 & 0 \\ 0 & 0 & - & - \\ 0 & 0 & - & - \end{array}$	1 0 1 0 0 1 0 1	$\begin{array}{ll} \hline 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}$	1 0 0 1 0 1 1 1 0	--	$\begin{aligned} & -- \\ & -- \\ & -- \end{aligned}$	-- -- --	$\begin{array}{ll} 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{lll} \hline & \left.\begin{array}{ll} 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array} \right\rvert\, \end{array}$	$\begin{array}{lll} \hline & 1 \\ 0 & 1 \\ 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{ll} \hline- & - \\ - & - \\ 0 & 1 \\ 0 & 1 \end{array}$	$\left\lvert\, \begin{array}{ll} -- \\ -- \\ 0 & 1 \\ 0 & 1 \end{array}\right.$	$\begin{array}{ll} \hline 0 & 1 \\ 0 & 1 \\ - & - \end{array}$	0 1 0 1 -- --	--
$\begin{aligned} & s_{1} 1_{0} \\ & s_{1}{ }_{1} \\ & s_{1} \\ & s_{2} \\ & s_{1} \end{aligned}$		$\begin{array}{llll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & 0 \\ \circ & \circ & 1 & 0 \\ \circ & \circ & \circ & 1 \end{array}$		$\begin{aligned} & -1 \\ & -1 \end{aligned}$	$-$	$\begin{array}{ll} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{ll} - & - \\ 0 & 1 \\ 0 & 1 \end{array}$	$\left\lvert\, \begin{array}{ll} -- \\ -- \\ 0 & 1 \\ 0 & 1 \end{array}\right.$	$\begin{array}{ll} \hline 0 & 1 \\ 0 & 1 \\ - & - \end{array}$	$\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ - & - \end{array}$	$\begin{array}{ll} 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{lll} \hline 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{\|ll\|} \hline 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{lll} \hline 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{array}$	-
$\begin{aligned} & s_{2_{0}} \\ & s_{2} \\ & \hline \end{aligned}$	--00 $00--$		$\begin{array}{ll}1 & \circ \\ \circ & 1\end{array}$	-	---	--		-	$\begin{aligned} & -- \\ & 0 \\ & \hline \end{aligned}$	$\left\lvert\, \begin{gathered} -- \\ 0 \end{gathered}\right.$	01	01 --1	$--$	--		--	
$\begin{array}{r} { }^{s_{3}{ }_{0}} \\ s_{3} \\ \hline \end{array}$			-	$\begin{array}{ll} 1 \circ \\ \circ & 1 \end{array}$		--		-	$\begin{aligned} & -- \\ & 01 \end{aligned}$	$\begin{aligned} & 01 \\ & -1 \end{aligned}$	$\begin{aligned} & -- \\ & 0 \end{aligned}$	0 1		$\begin{aligned} & -- \\ & -- \\ & - \\ & \hline \end{aligned}$		--	
$\begin{array}{r} s_{4_{0}} \\ s_{4} \\ \hline \end{array}$					$\begin{array}{\|ll\|}1 & \circ \\ \circ & 1\end{array}$				--	01	0 1	$\begin{gathered} -- \\ 01 \end{gathered}$		--			
$\begin{aligned} & { }^{s_{5}}{ }_{0} \\ & s_{5} 5_{1} \\ & \hline \end{aligned}$		--0	--		---	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	-	-	--	-	--	-	$\begin{array}{ll} - & - \\ 0 & 1 \end{array}$	$\begin{array}{\|c} -- \\ 0 \end{array}$	01 --1	$\begin{array}{ll}0 & 1 \\ -8\end{array}$	
$\begin{aligned} & s_{6}{ }_{0} \\ & s_{6} \\ & \hline \end{aligned}$			-				$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	-	--	--			$-\overline{-}$	$\left\lvert\, \begin{gathered} 01 \\ -1 \end{gathered}\right.$	$\left\lvert\, \begin{gathered} -- \\ 01 \end{gathered}\right.$	0 -1 -	
$\begin{aligned} & { }^{s} 7_{0} \\ & { }^{s} 7_{1} \\ & \hline \hline \end{aligned}$		$-00-$ $0-0$						$\begin{array}{ll}1 & \circ \\ \circ & 1\end{array}$					--	0 - -	0 - -	$\begin{aligned} & \hline-- \\ & 01 \end{aligned}$	
$\begin{aligned} & { }^{s_{8}} 0_{0} \\ & { }^{s_{8}} \\ & \hline \end{aligned}$		-	10	10	1			-	$\begin{array}{ll}1 & \circ \\ \circ & 1\end{array}$	01 --	01 --	01	$--\mid-$	-	01	0 1	$\left\lvert\, \begin{array}{cc}--0 & 0 \\ 0 & 0\end{array}\right.$
$\begin{aligned} & s_{9} 9_{0} \\ & s_{9} \\ & s_{9} \\ & \hline \end{aligned}$	0100 $-0--$		10	01	0				01 -1	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	0 - -	01	-		0 -1 -	01	
$\begin{aligned} & s_{10} 10_{0} \\ & s_{10} \\ & \hline \end{aligned}$	0010 $-\quad 0-1$		- 1	10	01			-	0 -1 -1	01 --	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	01	$\begin{array}{ll}0 & 1 \\ --\end{array}$	01		--	
$\begin{aligned} & s_{11_{0}} \\ & s_{11_{1}} \\ & \hline \end{aligned}$	0001 $-\quad-0$		1	01	10			-	01	01	01 --	$\begin{array}{ll} \hline 1 \circ \\ \circ & 1 \end{array}$	01 --1	01			
$\begin{aligned} & s_{12}{ }_{0} \\ & s_{12} \\ & \hline \end{aligned}$					---	10	10	10		--	$\mathrm{O}_{1} 1$	01	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	01	01	01	$-0-0$ $0-0-$
$\begin{aligned} & s_{13} \\ & s_{1} \\ & s_{1} \\ & \hline \end{aligned}$		$\begin{gathered} \hline 0100 \\ -0-1 \end{gathered}$	---	--	-	10	01	01	--	-	01	01	0 1 -1	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	01	01	
$\begin{aligned} & s_{14_{0}} \\ & s_{14_{1}} \\ & \hline \end{aligned}$	0	00010 $-\quad 0-1$	---	--	-	01	10	01	01	01	-	$-$	01	01	$\begin{array}{ll} \hline 1 & \circ \\ \circ & 1 \end{array}$	0 1	----
$\begin{aligned} & s_{15} 5_{0} \\ & s_{15} \\ & \hline \end{aligned}$	0		--	--	--	01	01	10	01	01	--	--	01 --	01	01	$\begin{array}{\|ll\|}1 & \circ \\ \circ & 1\end{array}$	--
$\begin{aligned} & s_{16} 6_{0} \\ & s_{16} \\ & s_{16} \\ & s_{16} \end{aligned}$	----	$----$	---	$\left\lvert\, \begin{aligned} & -- \\ & -- \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & -- \\ & -- \\ & -- \end{aligned}\right.$	$\begin{aligned} & -- \\ & -- \\ & -- \end{aligned}$		-- -- --	$\begin{aligned} & -0 \\ & -0 \\ & 0- \\ & 0- \end{aligned}$	$\left\lvert\, \begin{aligned} & -- \\ & -- \\ & -- \\ & -- \end{aligned}\right.$		$\begin{aligned} & -- \\ & -- \\ & -- \\ & -- \end{aligned}$	-0 - 0 - -0 - 0 - 	$\left\lvert\, \begin{aligned} & -- \\ & -- \\ & -- \\ & -- \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & -- \\ & -- \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & -- \\ & -- \\ & -- \end{aligned}\right.$	

Figure 54: XOR/choice

Consolidation produces the decided conflict relationships $r_{8_{0_{5}}}$ and the propagated decision in $r_{0_{0_{5}}}$. Decisions for merging cells $c_{99}, c_{13_{13}}$ have been added (see figure 55).

P	----	----	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-
$\begin{aligned} & s_{0_{0}} \\ & s_{0_{1}} \\ & s_{0_{2}} \\ & s_{0_{3}} \end{aligned}$	$\begin{array}{llll} \hline 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array}$	$\begin{array}{lll} \hline-- & 0 & 0 \\ -- & 0 & 0 \\ 0 & 0 & - \\ 0 & 0 & - \end{array}$	$\begin{array}{ll} 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{ll} \hline 10 \\ -- \\ -- \end{array}$	-- -- --		$\begin{array}{ll} 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{lll} \hline 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{lll} 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{ll} \hline 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{array}$	-- - -- 0 1 0 0 1 0	$\begin{array}{\|l\|l\|} \hline- & - \\ - & - \\ \hline 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array},$	$\begin{array}{lll} \hline 0 & 1 \\ 0 & 1 \\ - & \end{array}$	$\begin{array}{ll} \hline 0 & 1 \\ 0 & 1 \\ - & - \end{array}$	$\begin{array}{ccccc} \hline- & - & 0 & 0 \\ 0 & 0 & - & - \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{array}$	$\left\lvert\, \begin{aligned} & ---- \\ & ---- \\ & ----\end{aligned}\right.$
$\begin{aligned} & s_{10} \\ & s_{1} \\ & s_{1} \\ & s_{1} \\ & s_{13} \\ & \hline \end{aligned}$		$\begin{array}{llll} \hline 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array}$	$\begin{array}{ll} \hline 10 \\ 10 \\ --- \end{array}$	$\begin{aligned} & -- \\ & -- \end{aligned}$		$\begin{array}{ll} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{lll} \hline 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{ll} \hline 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{array}$	$\begin{aligned} & -- \\ & -- \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\left\lvert\, \begin{array}{ll} -- \\ -- \\ 0 & 1 \\ 0 & 1 \end{array}\right.$	$\begin{array}{ll} \hline 0 & 1 \\ 0 & 1 \\ - & - \end{array}$	$\begin{array}{ll} \hline 0 & 1 \\ 0 & 1 \\ - & - \\ - & - \end{array}$	$\begin{array}{ll} 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{lll} 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{\|lll} \hline 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{lll} 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{cccc} \hline-0 & 0 & - & 0 \\ 0 & - & 0 & - \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{array}$	
$\begin{aligned} & s_{2}{ }_{2} \\ & s_{2} \\ & \hline \end{aligned}$	--00	-----	$\begin{array}{ll}1 & \circ \\ \circ & 1\end{array}$	---		--	--	--	$\begin{aligned} & -- \\ & 0 \end{aligned}$	$\begin{aligned} & -- \\ & 0 \\ & \hline \end{aligned}$	01	01 --	--	$\begin{array}{\|c\|} \hline- \\ \hline \end{array}$	--	--	- 0	
$\begin{aligned} & s_{3}{ }_{3} \\ & s_{3} \\ & \hline \end{aligned}$			-	$\begin{array}{ll} \hline 1 \circ \\ \circ & 1 \end{array}$	-		-		$-\quad-$	01	$\begin{aligned} & -- \\ & 0 \end{aligned}$	01 $-\quad-1$		$-$		$\begin{aligned} & -- \\ & -- \end{aligned}$		
$\begin{aligned} & s_{4_{0}} \\ & s_{4} \\ & \hline \end{aligned}$	$\begin{aligned} & -00- \\ & 0--0 \end{aligned}$	-	-	-	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	--	--	--	--	01	01	$\begin{aligned} & -- \\ & 01 \end{aligned}$	--	$-\mid-$			$--0-$ $00--$	
$\begin{aligned} & s_{5}{ }_{0} \\ & s_{5} \end{aligned}$	$\begin{aligned} & ---- \\ & 0--- \end{aligned}$	$\begin{aligned} & -\quad-00 \\ & 00 \end{aligned}$	-	--	-	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	--	--	$\begin{aligned} & -- \\ & 01 \end{aligned}$	--	--	$\left\lvert\, \begin{aligned} & -- \\ & -- \end{aligned}\right.$	$\begin{aligned} & -- \\ & 01 \end{aligned}$	$\begin{array}{ll} -- \\ 0 & 1 \end{array}$	01	01 --1	$\begin{array}{lll} - & - \\ 0 & 0 & 0 \\ \hline \end{array}$	
$\begin{aligned} & s_{6} 0 \\ & s_{6} \end{aligned}$		$\begin{aligned} & -0-0 \\ & 0-0- \end{aligned}$		-	---	--	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	--	--			---	$\begin{aligned} & -- \\ & 01 \end{aligned}$	$\begin{array}{l\|} \hline 01 \\ - \\ \hline \end{array}$	$\begin{array}{\|c} -- \\ 01 \end{array}$	0 -	$-0--$ $0-0-$	
$\begin{array}{r} { }^{{ }^{{ }^{7}} 0} \\ { }^{{ }_{7}} 1 \\ \hline \hline \end{array}$		$\begin{array}{lll} -0 & 0 & - \\ 0 & --0 \end{array}$		-		--	--	$\left\lvert\, \begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}\right.$	--			--	--	01	01	$-\quad-$	$-0--$ $0-0-$	
$\begin{array}{r} s_{8_{0}} \\ s_{8} \\ \hline \end{array}$	$\begin{array}{lllll}10 & 0 & 0 \\ 0 & - & - & -\end{array}$	--00	10	10	10	10	-	-	$\begin{array}{ll}1 & \circ \\ \circ & 1\end{array}$	01	01	01	--	\|--	01	01	--00 0	-
$\begin{array}{r} { }^{s_{9}} 0 \\ s_{9} \\ \hline \end{array}$	$\begin{gathered}01 \\ -0\end{gathered} 0-0$	-							0 1	$\begin{array}{ll} \hline 1 \circ \\ \circ \end{array}$		01			01		$00--$ $-\quad 0-$	--0 0
$\begin{aligned} & s_{10} 0_{0} \\ & { }^{s_{10}} 1 \\ & \hline \end{aligned}$									0 1	0 1	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	0 -1 -	01	$\begin{array}{\|l\|} \hline 01 \\ - \\ \hline \end{array}$	-		0001	
$\begin{aligned} & s_{11_{0}} \\ & s_{11_{1}} \\ & \hline \end{aligned}$	0001 ---0	0	01	01	10		--	-	0 1	01	0	$\begin{array}{ll}1 & \circ \\ \circ & 1\end{array}$	0 - -	0 1	-		0001	-
$\begin{aligned} & s_{12}{ }_{0} \\ & s_{12} \\ & \hline \end{aligned}$	--00 ----		10	--	-	10	10	10	--	---	01	01	$\begin{array}{lll}1 & \circ \\ \circ & 1\end{array}$	01 --1	01	01	$-0-0$ $0-0-$	
$\begin{aligned} & { }^{s_{13}} 0 \\ & { }_{1} 13_{1} \\ & \hline \end{aligned}$	--00 ----	$\left\lvert\, \begin{array}{ccc} 0 & 1 & 0 \\ -0 & 0 & - \end{array}\right.$	10 -	--	- -	10	0 - -	01	--	--	01	0 - -	$\begin{array}{ll}0 & 1 \\ --\end{array}$	$\left\lvert\, \begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}\right.$	01		$0-0-$ $-0--$	\| $\begin{aligned} & -0-0 \\ & 0-0-\end{aligned}$
$\begin{aligned} & s_{14} 4_{0} \\ & s_{14_{1}} \\ & \hline \end{aligned}$	00--	$\left\lvert\, \begin{array}{ccc} 0 & 0 & 1 \\ - & - & 0 \\ \hline \end{array}\right.$	--	--	--	0 1	10	01	0 - -	01	--	--	0 -1 -	$\left\lvert\, \begin{array}{cc} \hline 0 & 1 \\ - & \\ \hline \end{array}\right.$	$\begin{array}{\|ll} \hline 1 & \circ \\ \circ & 1 \end{array}$	01	0001	-
$\begin{aligned} & s_{15} 5_{0} \\ & s_{15} \\ & \hline \end{aligned}$	00--	$\left\lvert\, \begin{array}{ccc} 0 & 0 & 0 \\ - & - & - \\ \hline \end{array}\right.$	--	--	--	01	01 --	10	0 1	01	--	--	0 - -	$\begin{array}{ll\|} \hline 0 & 1 \\ \hline \end{array}$	01	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	0001 ----1	-
$\begin{aligned} & s_{16} \\ & s_{1} \\ & s_{1} \\ & s_{16} \\ & s_{16} \\ & \hline \end{aligned}$	$\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & - & - & - \end{array}$	$\begin{array}{\|ccccc} \hline 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & - & - & - \end{array}$	$\begin{array}{ll} 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{array}$	$\begin{array}{ll} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{ll} \hline 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{array}$	$\begin{array}{ll} \hline 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{ll} \hline 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{ll} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{ll} \hline 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{lll} \hline 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{array}$	$\begin{array}{lll} \hline 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ - & - \end{array}$	$\begin{array}{ll} \hline 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}$	0 1 0 1 0 1	$\begin{array}{llll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array}$	
$\begin{aligned} & s_{17_{0}} \\ & s_{17} \\ & s_{17} \\ & s_{17} \\ & s_{17_{3}} \end{aligned}$	---- ----	---- ----	$\begin{aligned} & -- \\ & -- \\ & -- \end{aligned}$	$\begin{aligned} & -- \\ & -- \end{aligned}$	$\begin{aligned} & -- \\ & -- \\ & -- \end{aligned}$	-- -- --	$\left\lvert\, \begin{aligned} & -- \\ & -- \\ & -- \end{aligned}\right.$	$\left\|\begin{array}{l} -- \\ -- \\ -- \end{array}\right\|$	$\begin{aligned} & -- \\ & -- \\ & -- \\ & -- \end{aligned}$	$\begin{aligned} & -0 \\ & -0 \\ & 0- \\ & 0- \end{aligned}$	$\left\lvert\, \begin{aligned} & -- \\ & -- \\ & -- \end{aligned}\right.$	$\begin{aligned} & -- \\ & -- \\ & -- \end{aligned}$	$\begin{aligned} & -- \\ & -- \\ & -- \\ & -- \end{aligned}$	$\begin{array}{\|cc\|} \hline-0 & - \\ 0 & - \\ -0 & - \\ 0 & - \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & -- \\ & -- \\ & -- \\ & -- \end{aligned}\right.$	$\left\|\begin{array}{l} -- \\ -- \\ -- \end{array}\right\|$		$\begin{array}{\|ccccc} \hline 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array}$

Figure 55: XOR/choice

Consolidation produces the decided conflict relationships $r_{9_{0_{5}}}$ and the propagated decision in $r_{0_{1_{5}}}$. Decisions for merging cells $c_{2_{2}}, c_{5_{5}}$ have been added (see figure 56).

P	----	---	--	--	--	--	--	--	--	- -	--	--	-	-	-	--	-	----	----
$\begin{aligned} & s_{0_{0}} \\ & s_{0_{1}} \\ & s_{0} \\ & s_{2} \\ & s_{0_{3}} \\ & \hline \end{aligned}$	$\begin{array}{llll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{array}{cccc} - & - & 0 & 0 \\ - & - & 0 & 0 \\ 0 & 0 & - & - \\ 0 & 0 & - & - \end{array}\right.$	$\begin{array}{lll}1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1\end{array}$	$\begin{array}{\|ll\|l} \hline 1 & 0 & 1 \\ 0 & 1 & \\ 1 & 0 & \\ 0 & 1 & 1 \end{array}$	1 0 0 1 0 1 1 1 0	$\begin{array}{lll}1 & 0 \\ 1 & 0 \\ -- \\ --\end{array}$	$\left\lvert\, \begin{aligned} & -- \\ & -- \end{aligned}\right.$		$\begin{array}{lll}1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1\end{array}$	0 1 1 0 0 1 0 1	$\begin{array}{lll} \hline 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}$	$\left.\begin{array}{lll} \hline 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{array} \right\rvert\,$	---	$\begin{array}{ll} \hline-- \\ - & - \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{lll} 0 & 1 \\ 0 & 1 \\ - & - \\ - & - \end{array}$	$\left.\begin{array}{\|cc\|} \hline 0 & 1 \\ 0 & 1 \\ - & - \\ -- \end{array} \right\rvert\,$	-1 -0 0 0 0 0 - - 0 0 0 1 0 0 0 0 1 0	$\left\|\begin{array}{cccc} 0 & 0 & - & - \\ - & - & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{array}\right\|$	
$\begin{aligned} & s_{1_{0}} \\ & s_{1} \\ & s_{1} \\ & s_{1} \\ & s_{13} \\ & \hline \end{aligned}$	$\begin{array}{llll} - & - & 0 & 0 \\ - & - & 0 & 0 \\ 0 & 0 & - & - \\ 0 & 0 & - & - \end{array}$	$\begin{array}{llll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & 0 \\ \circ & \circ & 1 & 0 \\ \circ & \circ & \circ & 1 \end{array}$	$\begin{array}{ll} 10 \\ 10 \\ 10 \\ - & 0 \end{array}$	$\begin{array}{\|l\|} \hline-- \\ -- \\ -- \end{array}$		$\begin{array}{ll} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{\|lll} \hline 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{lll} \hline 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{array}$	$\begin{aligned} & - \\ & - \\ & -- \\ & 0 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{\|cc} \hline 0 & 1 \\ 0 & 1 \\ - & - \\ - & - \end{array}$	$\left.\begin{array}{\|ll\|} \hline 0 & 1 \\ 0 & 1 \\ - & - \\ -- \end{array} \right\rvert\,$	$\begin{array}{ll} 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{\|lll} \hline 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{cccc} \hline-0 & - & 0 \\ 0 & - & 0 & - \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{array}$	$\left\|\begin{array}{ccccc} \hline 0 & - & 0 & - \\ - & 0 & - & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{array}\right\|$	$-$
$\begin{aligned} & s_{2_{0}} \\ & s_{2} \end{aligned}$	--00 $00--1$	---- 0	$\begin{array}{ll}1 & \circ \\ \circ & 1\end{array}$	--	--	--	--	--	$\begin{aligned} & -- \\ & 01 \end{aligned}$	$-\quad-$	01	0 -1 -	$-\overline{-}$	$\begin{aligned} & -- \\ & 01 \end{aligned}$	--				
$\begin{array}{r} { }^{s_{3}}{ }_{0} \\ { }^{s_{3}} \\ \hline \end{array}$				$\begin{array}{ll\|l} \hline 1 & \circ & - \\ \circ & 1 & - \end{array}$	$--$	--		---	$\begin{aligned} & -- \\ & 01 \end{aligned}$	01	$\left\lvert\, \begin{gathered} -- \\ 0 \end{gathered}\right.$	01 --	--	--	-		$\begin{aligned} & --0- \\ & 0 \\ & 0 \end{aligned}$	$\left\|\begin{array}{ccc} 0 & 0 & -- \\ -- & 0 & - \end{array}\right\|$	
$\begin{aligned} & s_{4_{0}} \\ & s_{4} \\ & \hline \end{aligned}$	$-00-$ $0-0$				$\begin{array}{\|ll} \hline 1 & \circ \\ \circ & 1 \end{array}$	--			$-\overline{-}$	01 --	01	$\left\lvert\, \begin{gathered} -- \\ 0 \\ \hline \end{gathered}\right.$		--	-	--	--0-	00 --	
$\begin{array}{r} s_{5_{0}} \\ s_{5} \\ \hline \end{array}$	$00--$	$\|$--0 0 0 0 - -	--	$--$	$-$	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	-		$\begin{aligned} & -- \\ & 01 \end{aligned}$	$-\overline{-}$		-	$\begin{aligned} & -- \\ & 01 \end{aligned}$	$\left\lvert\, \begin{gathered} -- \\ 01 \end{gathered}\right.$	01 --	0 -1 -	--1 - 0 0 0 1 0	------	\|$-0-0$ $0-0-$
$\begin{array}{r} s_{6} 6_{0} \\ s_{6} \\ \hline \end{array}$		$\begin{aligned} & -0-0 \\ & 0-0- \end{aligned}$			\|-	- -	$\begin{array}{\|ll} 1 & \circ \\ \circ & 1 \end{array}$	--	- -	---	---	-	0	0 1	$\begin{aligned} & -- \\ & 0 \end{aligned}$	0 - -	$\begin{aligned} & -0-- \\ & 0-0- \end{aligned}$	$\left\|\begin{array}{c} 0-0- \\ -0-- \end{array}\right\|$	
$\begin{array}{r} { }^{s} 7_{0} \\ { }^{s} 7_{1} \\ \hline \end{array}$		$\begin{array}{lll} -0 & 0 & - \\ 0 & --0 \end{array}$			\|-	--		$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	--				$\begin{aligned} & -- \\ & 01 \end{aligned}$	0 1	01	$\left\lvert\, \begin{gathered} -- \\ 01 \end{gathered}\right.$	$-0--$ $0-0-$	($\begin{gathered}0-0- \\ -0--\end{gathered}$	
$\begin{array}{r} s_{8_{0}} \\ s_{8} \\ \hline \end{array}$		-	10	10	10	10		--	$\begin{array}{ll}1 & \circ \\ \circ & 1\end{array}$	01 --	01	01		--	01	01	--000	0 0 -- $-\quad-0-1$	
$\begin{array}{r} s_{9_{0}} \\ s_{9_{1}} \\ \hline \end{array}$		-	10		01	10		---	0 1	$1 \times$	01	01		---	01	01	$\begin{gathered} 00-- \\ --0-0- \end{gathered}$	$\left\|\begin{array}{\|ccc\|\|} \hline-- & 0 & 0 \\ 0 & 0 & - \\ \hline \end{array}\right\|$	
$\begin{aligned} & s_{10} 0_{0} \\ & s_{10} \\ & \hline \end{aligned}$	0010 $-\quad-0-$		01	1 0 0 -	01			---	0 1	011	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	0 1	0 -1 -	$\begin{array}{ll}0 & 1 \\ --1\end{array}$	---		0001	0001	
$\begin{aligned} & { }^{s_{11}} 0 \\ & { }_{11} 11_{1} \\ & \hline \end{aligned}$	0001 $-\quad-0$		01	0 1 - 1	10				01	01 --	01	$\begin{array}{ll} 1 \circ \\ \hline & 1 \end{array}$	0 1	01				1	
$\begin{aligned} & s_{12}{ }_{0} \\ & s_{12} \\ & \hline \end{aligned}$			10	-	-	10 --	10	10	--	--	011	01 --1	$\begin{array}{ll}1 & \circ \\ \circ & 1\end{array}$	01 --	01	011	$-0-0$ $0-0-$	\|c-0-1	
$\begin{aligned} & s_{13} 3_{0} \\ & s_{13} \\ & \hline \end{aligned}$		$\begin{array}{ccc} 0 & 1 & 0 \\ -0 & 0 \\ -0 & - & - \end{array}$	10		---	10	01	01	---	--	0 1	01	01	$\begin{array}{ll}1 & \circ \\ \circ & 1\end{array}$	0 1	01	$0-0-$ $-0--$ 0	$\left.\begin{array}{\|c\|} \hline-0-0 \\ 0-0- \end{array} \right\rvert\,$	
$\begin{aligned} & s_{14_{0}} \\ & s_{14_{1}} \\ & \hline \end{aligned}$	0	$\begin{gathered} 0010 \\ --0-1 \end{gathered}$		-	-	0 -1 -	10	0 -1 -	01 --	0 1	--	-1	0 1	0 -1 -	$\bigcirc \begin{array}{ll}1 & \circ \\ \circ & 1\end{array}$	0 - -	0 001	00001	
$\begin{aligned} & s_{15} 5_{0} \\ & s_{15} \\ & \hline \end{aligned}$		00001 ---0		-	-	0 1	01	10	01 --	01	-	-	01	01 --	01	$\begin{array}{lll}1 & \circ \\ \bigcirc & 1\end{array}$	0001	0000010	
$\begin{aligned} & s_{16}{ }_{0} \\ & s_{16} \\ & s_{16} \\ & s_{16} \\ & \hline \end{aligned}$	$\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & - & - & - \end{array}$	$\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & - & - & - \end{array}$	$\begin{array}{ll} 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{array}$	$\left\|\begin{array}{ll} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{array}\right\|$	$\begin{array}{\|ll} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{array}$	$\left\lvert\, \begin{array}{ll} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{array}\right.$	$\begin{array}{ll} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{ll} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{array}$	$\left\lvert\, \begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}\right.$	$\begin{array}{lll} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{lll}1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1\end{array}$	$\left\lvert\, \begin{array}{ll} 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ - & - \end{array}\right.$	$\begin{array}{lll}0 & 1 \\ 0 & 1 \\ 0 & 1 \\ - & -\end{array}$	$\|$0 1 0 1 0 1 - -		(ccccc $\begin{array}{cccc}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -0 & 0 & 0 & -\end{array}$	$--$
$\begin{aligned} & s_{17_{0}} \\ & s_{17} \\ & s_{17} \\ & s_{17} \\ & s_{17} \\ & \hline \end{aligned}$	$\begin{array}{llll} \hline 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ - & 0 & - & - \end{array}$	$\begin{array}{\|ccccc} \hline 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ - & 0 & - & - \\ \hline \end{array}$	$\begin{array}{ll} 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{array}$	$\begin{array}{\|ll\|} \hline 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{array},$	$\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{ll} 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{array}$	$\begin{array}{lll} \hline 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{\|ll\|} \hline 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ - & - \end{array}$	$\begin{array}{ll} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{lll} \hline 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ - & - \end{array}$	$\begin{array}{lll} \hline 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{lll} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{\|ll\|} \hline 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{\|ll\|} \hline 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ - & - \end{array}$	$\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}$	00 0 0 1 0 0 1 0 0 1 0 0 -0 0 -0	$\begin{array}{llll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array}$	$\begin{aligned} & --- \\ & --- \\ & --- \end{aligned}$
$\begin{aligned} & s_{18} 8_{0} \\ & s_{18} \\ & s_{18} \\ & s_{18} \\ & \hline \end{aligned}$	----	$----$	$\left\lvert\, \begin{gathered} -0 \\ -0 \\ 0- \\ 0- \end{gathered}\right.$	--- -- -- --		$\begin{aligned} & -0 \\ & 0- \\ & -0 \\ & 0- \end{aligned}$	$\begin{array}{l\|} --- \\ -- \\ -- \\ -- \\ - \end{array}$	$\begin{aligned} & -- \\ & -- \\ & -- \end{aligned}$	$\begin{aligned} & -- \\ & -- \\ & -- \end{aligned}$			$\left\|\begin{array}{l} -- \\ -- \\ -- \end{array}\right\|$	$\begin{aligned} & -- \\ & -- \\ & -- \end{aligned}$		$\begin{aligned} & -- \\ & -- \\ & -- \end{aligned}$	$\left\|\begin{array}{l} -- \\ -- \\ -- \end{array}\right\|$			$\begin{array}{ccccc}1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1\end{array}$

Figure 56: XOR/choice

P	----	----	--	--	--	--	---	--	--	--	--	--	--	--	--	--	---	----	- $000-$
$\begin{aligned} & s_{0_{0}} \\ & s_{0_{1}} \\ & s_{0_{2}} \\ & s_{0_{3}} \\ & \hline \end{aligned}$	$\begin{array}{llll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array}$	$\begin{array}{ccc} - & - & 0 \\ - & 0 \\ - & - & 0 \\ 0 & 0 & 0 \\ 0 & 0 & - \\ 0 & - & - \end{array}$	$\begin{array}{ll} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array}$		1 1 0 0 1 0 1 1 1 0	$\begin{array}{lll}1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1\end{array}$	--	--- -- -- --	$\|$1 0 0 0 1 1 0 1 0 0 1 0	$\begin{array}{\|ll} \hline & 1 \\ 1 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{\|ll} 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{ll} \hline-- \\ -- \\ 0 & 1 \\ 0 & 1 \end{array}$	$\left\lvert\, \begin{array}{cc} - & - \\ - & - \\ 0 & 1 \\ 0 & 1 \end{array}\right.$	$\left\lvert\, \begin{array}{cc} 0 & 1 \\ 0 & 1 \\ - & - \end{array}\right.$	$\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ - & - \\ --- \end{array}$	--0 0 0 0 0 - - 0 0 0 1 0 0 0 1	$\begin{array}{ccccc} \hline 0 & 0 & - & - \\ - & - & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 \end{array}$	1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1
$\begin{aligned} & s_{1}{ }_{1} \\ & s_{1} \\ & s_{1} \\ & s_{1} \\ & s_{1} \\ & s_{13} \\ & \hline \end{aligned}$	$\begin{array}{llll} - & - & 0 & 0 \\ - & - & 0 & 0 \\ 0 & 0 & - & - \\ 0 & 0 & - & - \end{array}$	$\begin{array}{llll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array}$	$\begin{array}{ll} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array}$		$-$	$\begin{array}{ll} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}$	$\left\|\begin{array}{ll} 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{array}\right\|$	01 01	$\left\lvert\, \begin{array}{ll} - & - \\ 0 & 1 \\ 0 & 1 \end{array}\right.$	$\left\lvert\, \begin{array}{ll} 0 & 1 \\ 0 & 1 \\ - & -- \end{array}\right.$	$\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ - & - \end{array}$	$\begin{array}{ll} 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{cccc} -0 & 0 & -0 \\ 0 & - & 0 & - \\ 0 & 0 & 0 & - \\ 0 & 0 & 0 & 1 \end{array}$	$\begin{array}{cccc} 0 & - & 0 & - \\ - & 0 & - & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{array}$	1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1
$\begin{array}{r} s_{2}{ }_{0} \\ s_{2} \\ \hline \end{array}$		$\left\lvert\, \begin{gathered}--00 \\ 0\end{gathered}\right.$	$\begin{array}{ll}1 & \circ \\ \circ & 1\end{array}$	$--$	- -	$\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}$	$--\mid$	$--$	$\begin{array}{ll} - \\ 0 & 1 \end{array}$	$\begin{aligned} & -- \\ & 0 \end{aligned}$	01	$\begin{aligned} & 01 \\ & -\quad \end{aligned}$	$-\overline{-}$	$\left\lvert\, \begin{gathered} -- \\ 01 \end{gathered}\right.$	01 --	01 --1	$\begin{array}{ll} ---- \\ 0 & 0 \end{array}$	----	$\begin{array}{lllll}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}$
$\begin{array}{r} s_{3} 3_{0} \\ s_{3} \\ \hline \end{array}$			-	$\left.\begin{array}{\|ll\|} 1 & 0 \\ \circ & 1 \end{array} \right\rvert\,$	--	--	--	--	$\begin{array}{cc}-- & 0 \\ 0 & 1\end{array}$	0 1	$\begin{aligned} & -- \\ & 0 \\ & 1 \end{aligned}$	0 - -	--	--				0	
$\begin{array}{r} s_{4_{0}} \\ s_{4} \\ \hline \end{array}$			--	$--$	$\begin{array}{ll} \hline 1 \circ \\ \circ & 1 \end{array}$	--	--	--	-- 0 0 1	0 1	0 1	$\begin{gathered} -- \\ 01 \end{gathered}$	--	--		--		0	$\begin{aligned} & -0 \\ & -0\end{aligned} 0-1$
$\begin{aligned} & { }^{s_{5}} 0 \\ & { }^{s_{5}} \\ & \hline \end{aligned}$		--00 0	$\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}$	--	-	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	\|-	\|-	$\overline{0} 1$	$-\quad-$	011	01	$-\overline{-}$	$\left\lvert\, \begin{gathered} - \\ 0 \\ 0 \end{gathered}\right.$	01	01	0001	$\begin{array}{lll} - & - \\ 0 & 0 & 0 \\ \hline \end{array}$	1 0 0 0 0 0 0 1
$\begin{aligned} & s_{6} 6_{0} \\ & s_{6} \\ & \hline \end{aligned}$					$\begin{aligned} & -- \\ & -- \end{aligned}$	- -	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	--	--	---	---		$-\overline{-}$	01 --	$\left.\begin{array}{ll} - & - \\ 0 & 1 \end{array} \right\rvert\,$	01		$\begin{gathered} 0-0- \\ -0-- \end{gathered}$	-0 0 - -0 0 - -0 0
$\begin{array}{r} { }^{s} 7_{0} \\ { }^{{ }^{7_{1}}} \\ \hline \end{array}$				-	-	--	\|-	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	--	--	-		--	01	01	--	$-0--$ $0-0-$	-	$\begin{aligned} & -0\end{aligned} 0-1$
$\begin{array}{r} { }^{s_{8}} 0 \\ s_{8} \\ \hline \end{array}$		-	10	10	10	10	-	-	$\begin{array}{ll}1 & \circ \\ \circ & 1\end{array}$	01	01	01	-	--	01	01		$00--$ $-\quad 0-$	1 0 0 0 -0 0 -
$\begin{array}{r} s_{9} 9_{0} \\ s_{9} \\ \hline \end{array}$		-	10	01	01	10		-	$\begin{array}{ll}0 & 1 \\ --\end{array}$	$\begin{array}{\|ll} 1 & \circ \\ \circ & 1 \end{array}$	01	01				01			
$\begin{array}{r} s_{10} 10_{0} \\ s_{10} \\ \hline \end{array}$			0	10	01	01			0 -1 -	0 1	$\begin{array}{ll} 1 \circ \\ \circ & 1 \end{array}$	01	01	01			0001	1	
$\begin{array}{r} s_{11_{0}} \\ s_{11_{1}} \\ \hline \end{array}$	0001 $-\quad-0$		0	011	10	0 1		-	01 -1	0 1	01	$\begin{array}{ll} 1 \circ \\ \hline & 1 \end{array}$	01	01			0	0001 $-\quad-\quad-1$	0 000018
$\begin{aligned} & s_{12}{ }_{0} \\ & s_{12} \\ & \hline \end{aligned}$			10	-	-	10 -1	10	10	--	--	01	01	$\begin{array}{ll}1 & \circ \\ \circ & 1\end{array}$	01 --	01	0 -1	$\left\lvert\, \begin{gathered}-0-0 \\ 0-0-\end{gathered}\right.$		1 0 0 0 -0 0 -
$\begin{array}{r} s_{13} 3_{0} \\ s_{13} \\ \hline \end{array}$			10	-	-	10	01	01	--	---	01	01	01	1 \circ 1	01	01		$0-0-$	
$\begin{aligned} & s_{14_{0}} \\ & s_{14_{1}} \\ & \hline \end{aligned}$		$\begin{aligned} & 0010 \\ & --0- \end{aligned}$	0	-	---	0 1	10	01	01	01	-		01	0 1	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	0 1	1	1	0 00018
$\begin{aligned} & s_{15} 5_{0} \\ & s_{15} \\ & \hline \end{aligned}$	0	00001 $-\quad-0$	01		-	01	01	10	0 -	01	--		01	01 --1	01	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	$\begin{array}{ll}0 & 0\end{array}$	01	
$\begin{array}{r} s_{16_{0}} \\ s_{16} \\ s_{16} \\ s_{16} \\ \hline \end{array}$	$\begin{array}{llll} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & - & - & - \end{array}$	$\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & - & - & - \end{array}$	$\begin{array}{ll} 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{array}$	$\left.\begin{array}{ll} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{array} \right\rvert\,$	$\begin{array}{\|ll} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{array}$	$\begin{array}{ll} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{\|ll} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{ll} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\left.\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array} \right\rvert\,$	$\begin{array}{ll} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{lll} \hline 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ - & - \end{array}$	$\begin{array}{lll} \hline 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{lll} \hline & \left.\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array} \right\rvert\, \end{array}$	$\begin{array}{llll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array}$	$\begin{array}{lllll} \hline 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ - & 0 & 0 & - \end{array}$	1 0 0 0 1 0 0 0 1 0 0 0 - 0 0 -
$\begin{aligned} & s_{17_{0}} \\ & s_{17_{1}} \\ & s_{17_{2}} \\ & s_{17_{3}} \\ & \hline \hline \end{aligned}$	$\begin{array}{llll} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ - & 0 & - & - \end{array}$	$\begin{array}{llll} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ - & 0 & - & - \end{array}$	$\begin{array}{ll} 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{array}$	$\begin{array}{ll\|} \hline 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{ll} 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{array}$	$\begin{array}{lll} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{\|lll} \hline 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{lll} \hline 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ - & - \end{array}$	$\begin{array}{\|ll} \hline 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{lll} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{lll} \hline 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{ccccc} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ - & 0 & 0 & - \end{array}$	$\begin{array}{llll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \\ \hline \hline \end{array}$	
$\begin{aligned} & s_{18} 8_{0} \\ & s_{18} \\ & s_{18} \\ & s_{18} \\ & \hline \end{aligned}$	$\begin{array}{llll} - & - & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & - & - \end{array}$	$\begin{array}{llll} - & - & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & - & - \end{array}$	$\begin{array}{ll} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{ll} - & - \\ 0 & 0 \\ 0 & 0 \\ - & - \end{array}$	$\left\lvert\, \begin{array}{cc}-- \\ 0 & 0 \\ 0 & 0\end{array}\right.$	$\begin{array}{ll} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{ll} - & - \\ 0 & 0 \\ 0 & 0 \end{array}$	- $\begin{gathered}- \\ 0\end{gathered}$	$\begin{array}{ll} - & - \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{array}$	$\left\lvert\, \begin{array}{ll} - & - \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{array}\right.$	$\begin{array}{ll} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\left.\begin{array}{lll} 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ - & - \end{array} \right\rvert\,$	$\begin{array}{ll} - & - \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{ll} - & - \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{ll} 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ - & - \end{array}$	$\begin{array}{llll} - & - & - & - \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array}$	$\begin{array}{llll} - & - & - & - \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ \hline \end{array}$	$\begin{array}{lllll} 1 & \circ & \circ & \circ \\ \circ & \circ & \circ & \circ \\ \circ & \circ & \circ & \circ \\ \circ & \circ & \circ & 1 \end{array}$

Figure 57: XOR/choice

After redundancy removal (figure 58), the 5 2-state cells $c_{2_{2}}-c_{6_{6}}$ can be mapped to propositional variables and a conjunction of DNF clauses can be directly derived from the conflict relations in $r_{0_{x_{y}}}, r_{1_{x_{y}}}, x=(0,1,2,3), y=(2,3,4,5,6)$.

P	----	----	-	--	- -	-	-	- -	-	--	--	--	-	--	--	-	-	- $000-$
$\begin{aligned} & s_{0} 0_{0} \\ & s_{0} 0_{1} \\ & s_{0} \\ & s_{2} \\ & s_{0_{3}} \\ & \hline \end{aligned}$	$\begin{array}{lllll}1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1\end{array}$	-- 0 0 - -0 0 0 0 - 0 0 -	$\begin{array}{ll} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{\|ll} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{array}$	--	-	$\begin{array}{ll} 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{ll} - & - \\ -- \\ 0 & 1 \\ 0 & 1 \end{array}$	- - - - - 0 1 0 1	$\begin{array}{\|cc\|} \hline 0 & 1 \\ 0 & 1 \\ - & \end{array}$	$\left\lvert\, \begin{array}{ll} 0 & 1 \\ 0 & 1 \\ - & 1 \end{array}\right.$	$\begin{array}{ccccc}--00 \\ 0 & 0 & - & - \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1\end{array}$	$\left\|\begin{array}{cccc} 0 & 0 & - & - \\ - & - & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{array}\right\|$	1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1
$\begin{aligned} & s_{1}{ }_{10} \\ & s_{1} \\ & s_{1} \\ & s_{1} \\ & s_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{llll} \hline 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array}$	$\begin{array}{ll} 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\mid-$	$-$	$\begin{array}{ll} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{\|ll} 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{array}$	$\begin{aligned} & -- \\ & -- \\ & \hline 0 \\ & 0 \\ & 0 \end{aligned}$	$\left\lvert\, \begin{array}{ll} - & - \\ 0 & 1 \\ 0 & 1 \end{array}\right.$	$\begin{array}{\|ll\|} \hline 0 & 1 \\ 0 & 1 \\ - & \end{array}$	$\begin{array}{\|ll} \hline 0 & 1 \\ 0 & 1 \\ - & - \end{array}$	$\begin{array}{ll} 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{ll} \hline 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{lll} 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{llll} \hline-0 & 0 & -0 \\ 0 & - & 0 & - \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{array}$	$\begin{array}{cccc} 0 & - & 0 & - \\ -0 & 0 & - & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{array}$	$\left.\begin{array}{llll} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{array} \right\rvert\,$
$\begin{aligned} & s_{20} \\ & s_{2} \\ & \hline \end{aligned}$	-	-	$\begin{array}{ll}1 & \circ \\ \circ & 1\end{array}$		---		---	01	01	01	01	01	$\begin{aligned} & -- \\ & 01 \end{aligned}$	01	01	0001	0001	
$\begin{aligned} & { }^{s_{3}}{ }_{0} \\ & s_{3} \\ & \hline \end{aligned}$				$\text { ○ } 1$	---			$-\overline{0}$	01	$\left\lvert\, \begin{gathered} -- \\ 01 \end{gathered}\right.$	01		$\begin{aligned} & -- \\ & -- \\ & - \end{aligned}$			$\begin{aligned} & --0- \\ & 00-- \end{aligned}$		
$\begin{aligned} & s_{4} 4_{0} \\ & s_{4} \\ & \hline \end{aligned}$					$\begin{array}{\|ll} 1 & \circ \\ \circ & 1 \end{array}$		---	--	01							$--0-$ 0 0		
$\begin{aligned} & s_{5_{0}} \\ & s_{5} \\ & \hline \end{aligned}$					---	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	---	--				$-\overline{0}$	$\left\|\begin{array}{ll} 0 & 1 \\ - & - \end{array}\right\|$	$\begin{aligned} & -- \\ & 0 \end{aligned}$	0 -1 -	$\begin{gathered} \hline-0-- \\ 0-0- \end{gathered}$	$\left\|\begin{array}{c} 0-0- \\ -0-- \end{array}\right\|$	
$\begin{aligned} & s_{6} 6_{0} \\ & s_{6} \\ & \hline \end{aligned}$					---		$\begin{array}{\|ll} 1 & \circ \\ \circ & 1 \end{array}$					$-\overline{-}$	01	01	$-\overline{-}$	$--$	$-$	
$\begin{array}{r} { }^{s} 7_{0} \\ { }^{s} 7_{1} \\ \hline \end{array}$			10	10	10		---	$\begin{array}{ll}1 & \circ \\ \circ & 1\end{array}$	01	01	01		--	01	01		$00--$ $-\quad 0-$	
$\begin{aligned} & s_{8} 8_{0} \\ & s_{8} \\ & \hline \end{aligned}$			1					0	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	01	01		---	1	01	-		
$\begin{aligned} & s_{9} 9_{0} \\ & s_{9} \\ & \hline \end{aligned}$			0					01	0	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	01		1					
$\begin{aligned} & s_{10} 0 \\ & s_{10} \\ & \hline \end{aligned}$			0	0	1			0	0	0	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	0 1 -	1					0 0 0 1 -0 0 -
$\begin{aligned} & s_{11_{0}} \\ & s_{11} \\ & \hline \end{aligned}$			10			10	10			01	01	$\begin{array}{lll}1 & \circ \\ \circ & 1\end{array}$	01	01	01	$\begin{aligned} & 0-0 \\ & -0- \end{aligned}$		
$\begin{aligned} & s_{12}{ }_{0} \\ & s_{12} \\ & \hline \end{aligned}$			1			01	0			01	01	0 - -	10	01	01	$-$		
$\begin{aligned} & { }^{s_{13}} 0 \\ & { }^{s_{13}} 1 \\ & \hline \end{aligned}$			0 1 -			10	0	0	0 1 -			0	0	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	01			
$\begin{aligned} & s_{14_{0}} \\ & s_{14_{1}} \\ & \hline \end{aligned}$		$\left.\begin{array}{cccc} 0 & 0 & 0 & 1 \\ - & - & - & 0 \end{array} \right\rvert\,$	0			0	1	0	0 -1 -	--		0 1 -	1	1	10			0 0 0 1 -0 0 -
$\begin{aligned} & s_{15} \\ & s_{15} \\ & s_{15} \\ & s_{15} \\ & s_{15} \end{aligned}$	$\begin{array}{llll} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & - & - & - \end{array}$	$\left\|\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & - & - & - \end{array}\right\|$	$\begin{array}{ll} 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{array}$	$\begin{array}{\|ll} 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{ll} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}$	$\left\|\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}\right\|$	$\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ - & - \end{array}$	$\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\left.\begin{array}{cccc} \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array} \right\rvert\,$	$\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ - & 0 & 0 & - \end{array}$	$\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ - & 0 & 0 & - \end{array}$
$\begin{aligned} & s_{16_{0}} \\ & s_{16} \\ & s_{16} \\ & s_{16} \\ & \hline \end{aligned}$	$\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ - & 0 & - & - \end{array}$	$\left\lvert\, \begin{array}{ccccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -0 & - & - & - \end{array}\right.$	$\begin{array}{ll} 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{array}$	$\left\lvert\, \begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{array}\right.$	$\left\lvert\, \begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{array}\right.$	$\left.\begin{array}{ll} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array} \right\rvert\,$	$\begin{array}{\|ll\|} \hline 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{ll} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\left\lvert\, \begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}\right.$	$\left\lvert\, \begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}\right.$	$\begin{array}{ll} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\left\lvert\, \begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}\right.$	$\begin{array}{ccccc} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ - & 0 & 0 & - \end{array}$	$\left.\begin{array}{llll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array} \right\rvert\,$	1 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 -
$\begin{aligned} & s_{17_{0}} \\ & s_{17_{1}} \\ & s_{17_{2}} \\ & s_{17_{3}} \end{aligned}$	$\begin{array}{cccc}--1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & - & -\end{array}$	$\left\lvert\, \begin{array}{ccccc}- & - & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & - & -\end{array}\right.$	$\begin{array}{ll} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{ll}-- \\ 0 & 0 \\ 0 & 0\end{array}$	-- 0 0 0 0	$\begin{array}{ll}- \\ 0 & 0 \\ 0 & 0\end{array}$	- 0 0 0	$\begin{array}{ll} - & - \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{ll} - & - \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{ll} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{ll} - & - \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{ll} - & - \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{ll} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{array}$	- - - 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccc} - & - & - & - \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array}$	$\left.\begin{array}{llll} 1 & \circ & \circ & \circ \\ \circ & \circ & \circ & \circ \\ \circ & \circ & \circ & \circ \\ \circ & \circ & \circ & 1 \end{array} \right\rvert\,$

Figure 58: XOR/choice

The resulting conjunction of DNF clauses:

$$
\left.\begin{array}{ll}
(a \wedge b \wedge c) & \vee \\
(a \wedge \neg b \wedge \neg c) & \vee \\
(\neg a \wedge b \wedge \neg c) & \vee \\
(\neg a \wedge \neg b \wedge c) &
\end{array}\right) \wedge
$$

can be transformed to a CNF formula with the well-known equivalences of XOR logic^{4} :

$$
\begin{array}{cc}
\left(\begin{array}{c}
a \vee b \vee c) \\
(a \vee \neg b \vee \neg c)
\end{array}\right. & \wedge \\
(\neg a \vee b \vee \neg c) & \wedge \\
(\neg a \vee \neg b \vee c) & \wedge \\
(a \vee d \vee e) & \wedge \\
(a \vee \neg d \vee \neg e) & \wedge \\
(\neg a \vee d \vee \neg e) & \wedge \\
(\neg a \vee \neg d \vee e) &
\end{array}
$$

The CNF formula is more suitable for SAT-solvers with Gaussian elimination than the original formula in direct encoding.
Note that once this deduction rule is proved, it can be directly applied, without constructing the choice variables or merging cells.

[^2]
13.1 Substituting Gaussion Elimination for Determining Satisfiability

When the at-most-one clauses from the above direct encoding are omitted:

$$
\begin{array}{lll}
\left(\begin{array}{cc}
a \vee & b \vee \\
(& \vee \vee
\end{array}\right) & \wedge \\
(\neg \vee \vee \vee \neg g) \wedge(\neg a \vee \neg h) & \wedge \\
(\neg a \vee \neg) \wedge(\neg b \vee \neg h) & \wedge \\
(\neg c \vee \neg e) \wedge(\neg c \vee \neg f) & \wedge \\
(\neg d \vee \neg e) \wedge(\neg d \vee \neg f) &
\end{array}
$$

the semantics of the problem change to "one or more" of the choices can be made. However, in structural logic, the problem presents the same relevant structure (see figure 59).

P	----	----	--	--	--	--	--	--	--	--	--	--	-	-
$\begin{aligned} & s_{0_{0}} \\ & s_{0} \\ & s_{0} \\ & s_{0}{ }_{2} \\ & s_{0_{3}} \\ & \hline \end{aligned}$	$\begin{array}{llll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 0 & \circ \\ \circ & \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{array}{cccc} - & - & 0 & 0 \\ - & - & 0 & 0 \\ 0 & 0 & - & - \\ 0 & 0 & - & - \\ \hline \end{array}\right.$	$\begin{array}{lll} 0 & 1 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{array}$	$\begin{array}{ll} \hline- & - \\ 0 & 1 \\ 1 & 0 \\ 1 & 0 \end{array}$	$\left\|\begin{array}{cc} -- \\ -- \\ 0 & 1 \\ 1 & 0 \end{array}\right\|$	$\left\|\begin{array}{l} -- \\ -- \\ -- \\ 0 \end{array}\right\|$	$\begin{array}{ll} 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\left\|\begin{array}{cc} - & - \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array}\right\|$	$\left\|\begin{array}{cc} -- \\ -- \\ 1 & 0 \\ 0 & 1 \end{array}\right\|$	$\left\|\begin{array}{c} -- \\ -- \\ -- \\ 10 \end{array}\right\|$	- - - - 0 1 0 1	$\left\|\begin{array}{ll} -- \\ - & - \\ 0 & 1 \\ 0 & 1 \end{array}\right\|$	$\begin{array}{lll} \hline 0 & 1 \\ 0 & 1 \\ - & - \\ - & - \end{array}$	$\begin{array}{lll} \hline 0 & 1 \\ 0 & 1 \\ - & - \end{array}$
$\begin{aligned} & s_{1_{0}} \\ & s_{1} \\ & s_{1} \\ & s_{1} \\ & s_{1} 3 \end{aligned}$	$\begin{array}{lll} - & - & 0 \end{array} 0$	$\begin{array}{llll} 1 & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & 1 \end{array}$	$\begin{array}{ll} - & - \\ -- \\ 1 & 0 \\ 1 & 0 \end{array}$	$\begin{array}{ll} -- \\ -- \\ 1 & 0 \\ 1 & 0 \end{array}$	$\begin{array}{ll} 10 \\ 10 \\ 10 \\ - & 0 \\ --- \end{array}$	$\begin{array}{\|ll\|} \hline 1 & 0 \\ 1 & 0 \\ - & - \end{array}$	$\begin{aligned} & -- \\ & -- \\ & \hline 0 \\ & 0 \\ & 0 \end{aligned}$	$\left\|\begin{array}{cc} - & - \\ -- \\ 0 & 1 \\ 0 & 1 \end{array}\right\|$	$\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ - & - \\ - & - \end{array}$	$\begin{array}{\|cc\|} \hline 0 & 1 \\ 0 & 1 \\ - & \end{array}$	$\begin{array}{ll} \hline 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{\|c} -- \\ 1 \end{array}$	$\begin{array}{ll} \hline & - \\ - & - \\ - & - \\ 1 & 0 \\ 0 & 1 \end{array}$	$\left\|\begin{array}{c} -- \\ -- \\ -- \\ 1 \end{array}\right\|$
$\begin{aligned} & s_{2} 2_{0} \\ & s_{2} \\ & \hline \end{aligned}$	$\begin{array}{ccccc}0 & - & - \\ 1 & 0 & 0 & 0\end{array}$		$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	-	--	--	$\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}$	$\begin{aligned} & -- \\ & -- \end{aligned}$	--		--	--	$\begin{array}{ll} - & - \\ 0 & 1 \end{array}$	$\left\|\begin{array}{cc} - & - \\ 0 & 1 \end{array}\right\|$
$\begin{aligned} & { }^{s_{3}}{ }_{0} \\ & s_{3} \\ & \hline \end{aligned}$	$\begin{aligned} & -0-- \\ & --00 \end{aligned}$		-	$\begin{array}{ll} \hline 1 \circ \\ \circ & 1 \end{array}$	-	-	--	$\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}$	--		--	--	$\begin{aligned} & \hline-- \\ & 01 \end{aligned}$	$\begin{array}{l\|} \hline- \\ \hline 0 \end{array}$
$\begin{aligned} & s_{4} 4_{0} \\ & s_{4} \\ & \hline \end{aligned}$	$--0-$ ---0	- $\begin{aligned} & ---- \\ & 0\end{aligned}$	--	--	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	--	--	--	$\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}$	$\left\lvert\, \begin{aligned} & -- \\ & -- \end{aligned}\right.$	$\left\lvert\, \begin{gathered} -- \\ 0 \end{gathered}\right.$	$\begin{array}{\|c} -- \\ 01 \end{array}$	--	--
$\begin{aligned} & { }^{s_{5} 0_{0}} \\ & { }^{s_{5}} \\ & \hline \end{aligned}$	---0	-----	-	-	--	$\begin{array}{ll\|} \hline 1 & 0 \\ \circ & 1 \end{array}$	--	--	--	$\begin{array}{ll} \hline 0 & 1 \\ 1 & 0 \end{array}$	$\left\lvert\, \begin{gathered} -- \\ 0 \end{gathered}\right.$	$\left\lvert\, \begin{gathered} -- \\ 01 \end{gathered}\right.$	--	--
$\begin{aligned} & { }^{s_{6}} 0 \\ & { }^{s_{6}} \\ & \hline \end{aligned}$	$\begin{aligned} & 1000 \\ & 0--- \end{aligned}$	--00	$\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}$	--	-	--	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	$--$	--		--	--	01	01
$\begin{array}{r} { }^{s} 7_{0} \\ { }^{s} 7_{1} \\ \hline \end{array}$	--00 $-0--$	--00	-	$\begin{array}{lll} \hline 0 & 1 \\ 1 & 0 \end{array}$	--	-	--	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	--	-	--	--	01	01
$\begin{aligned} & s_{8_{0}} \\ & s_{8} \\ & \hline \end{aligned}$	---0 $--0-$	00--	---	--	$\begin{array}{ll} \hline 0 & 1 \\ 1 & 0 \end{array}$	- -	--	--	$\begin{array}{ll} \hline 1 \circ \\ \circ \end{array}$	--	01	01	--	
$\begin{array}{r} { }^{s_{9} 0_{0}} \\ s_{9} \\ \hline \end{array}$	---- ---0	00 -	--	-	--	$\begin{array}{lll} \hline 0 & 1 \\ 1 & 0 \end{array}$	--	--	--	$\begin{array}{ll} \hline 1 \circ \\ \circ \end{array}$	$\begin{array}{\|c\|} \hline 01 \\ -- \end{array}$	0 1	-	
$\begin{aligned} & s_{10_{0}} \\ & s_{10} \\ & s_{10} \end{aligned}$	--00		---	--	10	10	--	--	01	01	$\begin{array}{lll} \hline 1 & 0 \\ \circ & 1 \end{array}$	--	--	--
$\begin{aligned} & s_{11_{0}} \\ & s_{11_{1}} \\ & \hline \end{aligned}$	--00	$\|$--0 0 -0 -	-	--	10	10	--	--	01 --	01	--	$\begin{array}{ll} \hline 1 \circ \\ \circ & 1 \end{array}$	--	-
$\begin{aligned} & s_{12}{ }_{0} \\ & s_{12} 1 \\ & \hline \end{aligned}$	$00--$	$\left\lvert\, \begin{aligned} & ---0 \\ & --0-\end{aligned}\right.$	10	10	--	--	01 --	01	--	--	--	--	$\begin{array}{ll} \hline 1 \circ \\ \circ & 1 \end{array}$	--
$\begin{aligned} & s_{13} \\ & s_{13} \\ & s_{13} \\ & \hline \end{aligned}$	$00--$	-----	10	10	--	--	01 --	01 --	---	--	--	--	--	$\begin{array}{ll}1 & \circ \\ \circ & 1\end{array}$

Figure 59: XOR/choice

After redundancy removal and making the problem strictly provable by merging, it presents the possible solutions in row $c_{10_{10}}$ of figure 60 .

P					--	--	--	--	--	-	
s_{0}	1000	$--00$	10	-	--	--	-	-	01	01	$--000000$
$s_{0_{1}}$	$\bigcirc 1 \circ \circ$	--00	01	10	--	--	--	-	01	01	00--0000
$s_{0_{2}}$	$\bigcirc \circ 1 \circ$	00--	01	01	10	-	01	01	--	--	$0000--00$
s_{03}	$\bigcirc \circ \circ 1$	00--	01	01	01	10	01	01	--	--	$000000--$
s_{10}	--00	$1 \circ \circ \circ$	--	--	01	01	10	--	--	--	$-0-00000$
s_{1}	--00	$\bigcirc 1 \circ \circ$	--	--	01	01	01	10	--	--	0-0-0000
s_{12}	00--	$\bigcirc \circ 1 \circ$	01	01			01	01	10	--	0000-0-0
s_{13}	$00--$	$\bigcirc \circ \circ 1$	01	01	--	--	01	01	01	10	$00000-0-$
s_{2}	1000	$--00$	$1 \circ$	--	--	--	--	--	01	01	--000000
s_{21}	0---		- 1	--				--			$00-$
s_{30}	--00	--00	-	$1 \circ$	--	--	--	-	01	01	----0000
s_{3}	-0		--	- 1	--	-	--				--0 0
s_{40}	---		-	--	1	--	01	0	--	-	0
s_{4}	--0-				- 1						----00--
s_{50}	-	00	-	--	--	$1 \circ$	01	01	--	-	0000 ----
s_{51}	---0		--	--	--	- 1	--		-	--	------00
$s_{6} 0$	--00	100			01	0	$1 \circ$		--		-0-00000
s_{61}							- 1			-	$0-0-----$
s_{70}	--0 0	--00	--	--	01	01	--	1	--	-	----0000
s_{71}		-0					--	- 1	--	-	$-0-0-$
s_{80}	0	---0	0	0	--	--	--	--	$1 \circ$	-	0000-0-0
s_{81}		0					-	--	- 1	-	$--0-0-$
$s_{9_{0}}$	0	----	01	01	--	--	--	--	-	$1 \circ$	$0000-$
$s_{9_{1}}$		-0								- 1	-----0-0
s_{10}	1000	1000	10	-	01	01	10	-	01	01	$1 \circ \circ \circ \circ \circ \circ \circ$
$s_{10_{1}}$	1000	0100	10	--	01	01	01	10	01	01	$\bigcirc 1 \circ \circ \circ \circ \circ \circ$
$s_{10_{2}}$	0100	1000	01	10	01	01	10	--	01	01	$\bigcirc \circ 1 \circ \circ \circ \circ \circ$
$s_{10}{ }_{3}$	0100	0100	01	10	01	01	01	10	01	01	$\bigcirc \circ \circ 1 \circ \circ \circ \circ$
$s_{10}{ }_{4}$	0010	0010	01	01	10	--	01	01	10	-	$\bigcirc \circ \circ \circ 1 \circ \circ \circ$
$s_{10_{5}}$	0010	0001	01	01	10	--	01	01	01	10	$\bigcirc \circ \circ \circ \circ 1 \circ \circ$
s_{106}	0001	0010	01	01	01	10	01	01	10	-	$\bigcirc \circ \circ \circ \circ \circ 1 \circ$
s_{10}	0001	0001	01	01	01	10	01	01	01	10	$\bigcirc \circ \bigcirc \circ \circ \circ \circ 1$

Figure 60: XOR/choice

When comparing the previous result with the strictly provable problem having the at-most-one conflicts in figure 61, it becomes clear, that the relevant decisions in cells $c_{10_{0}}$ and $c_{10_{1}}$ are necessarily equivalent. The set of possible solutions is only determined by the mapped conflict relationships of the original propositional variables which allow for more combinations in the case of "at least one" compared to the case of "at most one".

P			--	--	--	--	--	--	--	--	--------
s_{0}	$1 \circ \circ \circ$	--00	10	01	01	01	--	--	01	01	$--000000$
$s_{0_{1}}$	$\bigcirc 1 \circ \circ$	--00	01	10	01	01	--	--	01	01	00--0000
$s_{0_{2}}$	$\bigcirc \circ 1 \circ$	00--	01	01	10	01	01	01		--	$0000--00$
$s_{0_{3}}$	$\bigcirc \circ \circ 1$	00 --	01	01	01	10	01	01	--	--	000000 --
s_{10}	--00	$1 \circ \circ \circ$	--	--	01	01	10	01	01	01	-0-00000
s_{1}	$--00$	$\bigcirc 1 \circ \circ$	--	-	01	01	01	10	01	01	0-0-0000
$s_{1}{ }_{2}$	00--	$\bigcirc \circ 1 \circ$	01	01	- -	--	01	01	10	01	0000-0-0
s_{13}	00--	$\bigcirc \circ \circ 1$	01	01	--	--	01	01	01	10	$00000-0-$
s_{20}	1000	--0 0		01	01	01		--	01	01	--000000
s_{21}			- 1					--			00------
s_{3}	0100	--00	01	$1 \circ$	01	01	--	--	01	01	$00--0000$
s_{3}	-0-			- 1							--00-
s_{4}	0010	0	01	01	$1 \circ$	01	01	01	--	--	$0000--00$
s_{4}	$0-$				$\bigcirc 1$					-	$--00-$
s_{50}	0001		01	01	01	10	01	01	--	--	000000 --
s_{51}	---0					- 1					00
s_{6}	--00	1000	--	--	01	01	1	01	01	01	-0-00000
s_{61}		$0-$	--	--			- 1	--		--	0-0-
s_{70}	--0 0	0	-	--	01	01	01	$1 \circ$	01	01	0-0-0000
s_{71}		-0--						-1	--		-0-0--
s_{80}	00	0010	01	01	-		01	01	$1 \circ$	01	0000-0-0
s_{81}		0			-				$\bigcirc 1$	--	----0-0-
$s 9_{0}$	$00-$	000	01	01	--	-	01	01	01	$1 \circ$	$00000-0-$
$s_{9_{1}}$		-0				--				- 1	$---0-0$
s_{10}	1000	1000	10	01	01	01	10	01	01	01	$1 \circ \circ \circ \circ \circ \circ \circ$
$s_{10}{ }_{1}$	1000	0100	10	01	01	01	01	10	01	01	$\bigcirc 1 \circ \circ \circ \circ \circ \circ$
$s_{10}{ }_{2}$	0100	1000	01	10	01	01	10	01	01	01	$\bigcirc \circ 1 \circ \circ \circ \circ \circ$
s_{10}	0100	0100	01	10	01	01	01	10	01	01	$\bigcirc \circ \circ 1 \circ \circ \circ \circ$
$s_{10}{ }_{4}$	0010	0010	01	01	10	01	01	01	10	01	$\bigcirc \circ \circ \circ 1 \circ \circ \circ$
s_{10}	0010	0001	01	01	10	01	01	01	01	10	$\bigcirc \circ \circ \circ \circ 1 \circ \circ$
$s_{10}{ }_{6}$	0001	0010	01	01	01	10	01	01	10	01	$\bigcirc \circ \circ \circ \circ \circ 1 \circ$
$s_{10}{ }_{7}$	0001	0001	01	01	01	10	01	01	01	10	$\bigcirc \circ \circ \circ \circ \circ \circ 1$

Figure 61: XOR/choice

This is consistent with the fact that if an XORSAT problem is satisfiable, the corresponding SAT problem is also satisfiable.
This can be used in this case to solve the easier equisatisfiable XORSAT problem instead of the harder SAT problem, if the exact number of solutions does not matter.

Regarding hardness of problems, regular XORSAT problems have an interesting property, in that the number of decisions required by DPLL is exactly the same as the number of partitions that must be made to reduce the satoku matrix to a 2-SAT instance.

14. Constraint Satisfaction Example

This example shows some of the effects that encoding has on the hardness of a problem.

14.1 Direct Encoding Without At-Most-One Constraints

The example given encodes a sudoku block. Figure 62 shows the problem in direct encoding without at-most-one constraints. Although it is still not possible to assign a value twice within the block, a solving strategy may be forced to (re-) detect the missing constraints very late (figure 64).

P	---------	---------							
$\begin{aligned} & s_{0_{0}} \\ & s_{0} 0_{4} \\ & s_{0} 0_{5} \\ & s_{0} 0_{6} \\ & s_{0}{ }_{0} \\ & s_{0} \\ & \hline \end{aligned}$		$0-$	$\begin{aligned} & 0 \\ & 0 \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & \hline \end{aligned}$		$-$				$\begin{aligned} & 0-------- \\ & -0------- \\ & --0------ \\ & ---0----- \\ & ----0---- \\ & -----0--- \\ & ------0-- \\ & -------0- \\ & --------0 \end{aligned}$
$\begin{aligned} & s_{1} \\ & s_{1}, \\ & s_{1}, \end{aligned}$	$0--------$ 1 $-0-------$ \circ $--0------$ \circ $---0-----$ \circ $----0----$ \circ $-----0---$ \circ $------0--$ \circ $-------0-$ \circ -------0 \circ	$1 \circ \circ \circ \circ \circ \circ \circ \circ$ - $1 \circ \circ \circ \circ \circ \circ \circ$ $\circ \circ 1 \circ \circ \circ \circ \circ \circ$ $\circ \circ \circ 1 \circ \circ \circ \circ \circ$ $\circ \circ \circ \circ 1 \circ \circ \circ \circ$ $\circ \circ \circ \circ \circ 1 \circ \circ \circ$ $\circ \circ \circ \circ \circ \circ 1 \circ \circ$ $\circ \circ \circ \circ \circ \circ \circ 1 \circ$ $\circ \circ \circ \circ \circ \circ \circ \circ 1$	$\begin{aligned} & 0-------- \\ & -0------- \\ & --0------ \\ & ---0----- \\ & ----0---- \\ & -----0--- \\ & ------0-- \\ & -------0- \end{aligned}$	$0--------$ $-0-------$ $--0------$ $---0-----$ $----0----$ $-----0---$ $------0--$ $------0-0$ --------0					$0--------$ $-0-------$ $--0------$ $---0-----$ $----0----$ $-----0---$ $-----0--$ $-------0-$ --------0
$\begin{aligned} & s_{2} 2_{0} \\ & s_{2} \\ & s_{2} \\ & s_{2} \\ & s_{2} \\ & s_{4} \\ & s_{2} \\ & s_{2} 6 \\ & s_{2} \\ & s_{2} \end{aligned}$		$\begin{aligned} & \hline 0-------- \\ & -0------- \\ & --0------ \\ & ---0----- \\ & ----0---- \\ & -----0--- \\ & ------0-- \\ & -------0- \\ & --------0 \end{aligned}$	$1 \circ \circ \circ \circ \circ \circ \circ \circ$ - $1 \circ \circ \circ \circ \circ \circ \circ$ - ○ $1 \circ \circ \circ \circ \circ \circ$ $\circ \circ \circ 1 \circ \circ \circ \circ \circ$ - ○○○ $1 \circ \circ \circ \circ$ $\circ \circ \circ \circ \circ 1 \circ \circ \circ$ $\circ \circ \circ \circ \circ \circ 1 \circ \circ$ $\circ \circ \circ \circ \circ \circ \circ 1 \circ$ $\circ \circ \circ \circ \circ \circ \circ \circ 1$		$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & 0 \end{aligned}$	-			
$\begin{aligned} & s_{3} s_{0} \\ & s_{3} \\ & s_{6} \\ & s_{3}{ }_{7} \\ & s_{3}{ }_{8} \end{aligned}$		$\begin{aligned} & 0-------- \\ & -0------- \\ & --0------ \\ & ---0----- \\ & ----0---- \\ & -----0--- \\ & ------0-- \\ & -------0- \\ & --------0 \end{aligned}$		- $1 \circ \circ \circ \circ \circ \circ \circ$ - ○ $1 \circ \circ \circ \circ \circ \circ$ - ○ ○ $1 \circ \circ \circ \circ \circ$ - ○ ○ ○ $1 \circ \circ \circ \circ$ - ○ ○ ○ ○ $1 \circ \circ \circ$ - ○ ○ ○ ○ ○ $1 \circ \circ$ - ○ ○ ○ ○ ○ ○ $1 \circ$ ○○○○○○○○ 1	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$				
$\begin{aligned} & { }^{s}{ }_{4}{ }_{0} \\ & s_{4} \\ & s_{4}{ }_{4} \\ & s_{4}{ }_{3} \\ & s_{4}{ }_{4} \\ & s_{4} \\ & { }^{s_{4}} 6 \\ & { }^{s_{4}} 7 \\ & s_{4} \end{aligned}$		$\begin{aligned} & 0-------- \\ & -0------- \\ & --0------ \\ & ---0----- \\ & ----0---- \\ & -----0--- \\ & ------0-- \\ & -------0- \\ & --------0 \end{aligned}$	$\|$$-0-------$ $--0------$ $---0-----$ $----0----$ $-----0---$ $------0--$ $-------0-$ --------0		○ 1 ○ ○ ○ ○ ○ ○ $\circ \circ 1 \circ \circ \circ \circ \circ \circ$ ○○○ $1 \circ \circ \circ \circ \circ$ $\circ \circ \circ \circ 1 \circ \circ \circ \circ$ $\circ \circ \circ \circ \circ 1 \circ \circ \circ$ $\circ \circ \circ \circ \circ \circ 1 \circ \circ$ $\circ \circ \circ \circ \circ \circ \circ 1 \circ$ $\circ \circ \circ \circ \circ \circ \circ \circ 1$	$\begin{aligned} & --0------ \\ & ---0----- \\ & ----0---- \\ & -----0--- \\ & ------0-- \\ & -------0- \\ & --------0 \end{aligned}$			-
${ }^{s_{5}} 0$ ${ }^{s} 5_{1}$ ${ }^{s_{5}}$ ${ }^{s} 5_{3}$ ${ }^{s_{5}}$ ${ }^{s} 5_{5}$ ${ }^{s_{5}} 6$ ${ }^{s_{5}} 7$ ${ }^{s_{5}}$	-	$0--------$ $-0-------$ $--0-----$ $---0-----$ $----0----$ $-----0---$ $-----0--$ $------0-$ -------0				$1 \circ \circ \circ \circ \circ \circ \circ \circ$ $\circ 1 \circ \circ \circ \circ \circ \circ \circ$ $\circ \circ 1 \circ \circ \circ \circ \circ \circ$ $\circ \circ \circ 1 \circ \circ \circ \circ \circ$ $\circ \circ \circ \circ 1 \circ \circ \circ \circ$ $\circ \circ \circ \circ \circ 1 \circ \circ \circ$ $\circ \circ \circ \circ \circ \circ 1 \circ \circ$ $\circ \circ \circ \circ \circ \circ \circ 1 \circ$ $\circ \circ \circ \circ \circ \circ \circ \circ 1$			$0--------$ $-0-------$ $--0------$ $---0-----$ $----0----$ $-----0---$ $------0--$ $-------0-$ --------0
$\begin{aligned} & { }^{s_{6}} 0 \\ & s_{6} \\ & s_{1} \\ & s_{6} \\ & s_{6} \\ & s_{6} \\ & s_{4} \\ & s_{6} \\ & s_{6} 6_{6} \\ & s_{6} \\ & s_{6} \\ & \hline \end{aligned}$	- 0 -------	$0--------$ $-0-------$ $--0-----$ $---0-----$ $----0----$ $-----0---$ $-----0--$ $------0-0$ -------0	$\left\lvert\, \begin{aligned} & -0------- \\ & --0------ \\ & ---0----- \\ & ----0---- \\ & -----0--- \\ & ------0-- \\ & -------0-- \\ & --------0 \end{aligned}\right.$				1०००००००० - $1 \circ \circ \circ \circ \circ \circ \circ$ ○○ $1 \circ \circ \circ \circ \circ \circ$ ○○○ $1 \circ \circ \circ \circ \circ$ ○○○○ $1 \circ \circ \circ \circ$ ○○○○○ $1 \circ \circ \circ$ ○○○○○○ $1 \circ \circ$ ○○○○○○○ $1 \circ$ ○○○○○○○○ 1	- - - 0	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$
$\begin{aligned} & { }^{s_{7}{ }_{7}} \\ & { }^{s_{7}} \\ & s_{7} \\ & s_{2} \\ & s_{7} \\ & { }^{s_{7}} 4 \\ & { }^{s_{7}} \\ & { }^{s_{7}} \\ & { }^{s_{7}} \end{aligned}$ s_{78}	$-0-------$ $--0------$ $---0--------------~$		$-0-------$ $--0------$ $---0-----$ $----0---$ $----0---$ $-----0--$ $------0-$	-	-	-	$\|$$0--------$ $-0-------$ $--0------$ $---0-----$ $----0----$ $-----0---$ $------0--$ $-------0-$ --------0	$1 \circ \circ \circ \circ \circ \circ \circ \circ$ - $1 \circ \circ \circ \circ \circ \circ \circ$ - ○ $10 \circ \circ \circ \circ \circ$ - ○○ $1 \circ \circ \circ \circ \circ$ ○○○○ $1 \circ \circ \circ \circ$ - ○○○○ $1 \circ \circ \circ$ $\circ \circ \circ \circ \circ \circ 1 \circ \circ$ - ○○○○○○ $1 \circ$ - ○○○○○○○ 1	$----0----$ $-----0---$ $------0--$ $-------0-$ --------0
${ }^{s} \varepsilon$	$0-------$ $-0------$ $--0----$ $---0---$ $----0---$ $-----0--$ $-----0-$ ------0	-)	0	0	$0--------$ $-0-------$ $--0------$ $---0-----$ $----0----$ $-----0---$ $-----0--$ $-------0-$ -------0	0	$1 \circ \circ \circ \circ \circ \circ \circ \circ$ - $1 \circ \circ \circ \circ \circ \circ$ $\circ \circ 1 \circ \circ \circ \circ \circ \circ$ ○○○ $1 \circ \circ \circ \circ \circ$ $\circ \circ \circ \circ 1 \circ \circ \circ \circ$ ○○○○○ $1 \circ \circ \circ$ $\circ \circ \circ \circ \circ \circ 1 \circ \circ$ ○○○○○○○ $1 \circ$ $\circ \circ \circ \circ \circ \circ \circ \circ 1$

Figure 62: Sudoku block in direct encoding, implicit constraints omitted

P									
$\begin{aligned} & { }^{s_{0} 0_{0}} \\ & s_{0}{ }^{0_{1}} \\ & s_{0_{2}} \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\begin{array}{\|l} 0-- \\ -0- \\ --0 \end{array}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}\right.$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$
$\begin{aligned} & s_{10} \\ & s_{1} \\ & s_{1} \\ & s_{12} \\ & \hline \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\left\|\begin{array}{l} 0-- \\ -0- \\ --0 \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}\right.$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$
$\begin{aligned} & s_{2}{ }_{2} \\ & s_{21} \\ & s_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\begin{array}{\|l} 0-- \\ -0- \\ --0 \end{array}$		$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}\right.$	$\begin{gathered} 0-- \\ -0- \\ --0 \end{gathered}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\begin{gathered} 0-- \\ -0- \\ --0 \end{gathered}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$
$\begin{aligned} & s_{3_{0}} \\ & s_{3} \\ & s_{3} \\ & s_{3} \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\begin{array}{\|l} 0-- \\ -0- \\ --0 \end{array}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\begin{gathered} 0-- \\ -0- \\ --0 \end{gathered}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}\right.$
$\begin{aligned} & s_{4_{0}} \\ & s_{4} \\ & s_{1} \\ & s_{4} \\ & \hline \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\left\|\begin{array}{c} 0-- \\ -0- \\ --0 \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}\right.$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$
$\begin{aligned} & s_{5} 5_{0} \\ & s_{5} \\ & s_{5} \\ & s_{5} \\ & \hline \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}\right.$	$\begin{aligned} & 0-- \\ & -0- \\ & -0 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}\right.$	$\begin{aligned} & -0- \\ & --0 \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & -0- \\ & --0 \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$
$\begin{aligned} & s_{6} 6_{0} \\ & s_{6} \\ & s_{6} \\ & s_{6} \\ & \hline \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\left\|\begin{array}{c} 0-- \\ -0- \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}\right.$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}\right.$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\begin{array}{llll} \hline & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$
$\begin{aligned} & { }^{{ }^{s} 7_{0}} \\ & { }^{s} 7_{1} \\ & { }^{s} 7_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\left\lvert\, \begin{gathered} 0-- \\ -0- \end{gathered}\right.$	$\left\lvert\, \begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}\right.$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$
$\begin{aligned} & s_{8_{0}} \\ & s_{8_{1}} \\ & s_{8_{2}} \\ & \hline \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}\right.$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$

Figure 63: Sudoku block in direct encoding, too many impossible states removed

P	00	000	000	000	000	000	000	000	- $0-$
$\begin{array}{r} s_{0} 0_{0} \\ s_{0} \\ s_{0} \\ \hline \end{array}$	\bigcirc	$\begin{array}{llll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}$	$\begin{array}{llll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}$	$\begin{array}{llll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}$	$\begin{array}{llll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}$	$\begin{array}{lll} \hline 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{llll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}$	$\begin{array}{llll} \hline 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$
$\begin{aligned} & { }^{s_{1} 0_{0}} \\ & { }^{s_{1}} \\ & { }^{s_{1}} \\ & \hline \end{aligned}$	$\begin{array}{ll} \hline & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{llll} \circ & \circ & \circ \\ \circ & \circ & \circ \\ \circ & \circ & \circ \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{llll} \hline 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{llll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$
$\begin{aligned} & s_{2_{0}} \\ & s_{2} \\ & s_{2} \end{aligned}$	$\begin{array}{ll} \hline 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} \circ & \circ & \circ \\ \circ & \circ & \circ \\ \circ & \circ & \circ \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} \hline 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} \hline 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} \hline 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} \hline 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$
$\begin{aligned} & s_{3}{ }_{0} \\ & s_{3} \\ & s_{1} \\ & s_{3} \end{aligned}$	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{llll} \circ & \circ & \circ \\ \circ & \circ & \circ \\ \circ & \circ & \circ \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$
$\begin{aligned} & s_{4} 4_{0} \\ & s_{4}{ }_{1} \\ & s_{4} \\ & \hline \end{aligned}$	$\begin{array}{ll} \hline & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{llll} \circ & \circ & \circ \\ \circ & \circ & \circ \\ \circ & \circ & \circ \end{array}$	$\begin{array}{lll} \hline 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} \hline 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$
$\begin{aligned} & { }^{s_{5} 0_{0}} \\ & s_{5} \\ & s_{5} \end{aligned}$	$\begin{array}{ll} \hline & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} \hline 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{llll} \hline & 0 & \circ \\ \circ & \circ & \circ \\ \circ & \circ & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} \hline 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} \hline 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$
$\begin{aligned} & { }^{s_{6} 0_{0}} \\ & { }^{s_{6}} \\ & { }^{s_{6}} \\ & \hline \end{aligned}$	$\begin{array}{ll} \hline & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{llll} \hline 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{llll} \circ & \circ & \circ \\ \circ & \circ & \circ \\ \circ & \circ & \circ \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$
$\begin{array}{r} { }^{s} 7_{0} \\ { }^{s} 7_{1} \\ { }^{s} 7_{2} \\ \hline \end{array}$	$\begin{array}{ll} \hline 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} \hline 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{llll} \hline 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{llll} \circ & \circ & \circ \\ \circ & \circ & \circ \\ \circ & \circ & \circ \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$
$\begin{aligned} & s_{8_{0}} \\ & s_{8} \\ & s_{8_{2}} \end{aligned}$	$\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} \hline 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	

Figure 64: Sudoku block in direct encoding, contradiction detected

A good solving strategy is to follow strict pair-wise requirements, which better manages the pitfalls of excluding too many states.

P	$0000000--$	---------	---------
${ }^{s_{0}} 0$	- ○ ○ ○ ○	000000000	000000000
$s_{0}{ }_{1}$	$\bigcirc \circ \bigcirc \circ \circ \circ$	000000000	000000000
$s_{0}{ }_{2}$	- ○○○○○○○○	000000000	0000000000
$s_{0}{ }_{3}$	- 0 ○ $0 \circ \circ$	000000000	00000000000
$s_{0}{ }_{4}$	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \circ \bigcirc \circ$	000000000	0000000000
$s_{0}{ }_{5}$	- ○○○○○○○○	000000000	000000000
$s_{0} 6$	- ○○○○○○○	000000000	000000000
$s^{0} 7$	$\bigcirc \circ \circ \circ \circ \circ \circ 1 \circ$	-0	-
${ }^{s_{0}}$	- ○ ○ ○ ○ ○ ○ ○ 1	--------0	
${ }^{s} 1_{0}$	00000000--		$0-------$
${ }^{s_{1}} 1$	0000000	- $1 \circ \circ \circ \circ \circ \circ \circ$	$-0-------$
$s_{1}{ }_{2}$	0000000	- $01 \circ \circ \circ \circ \circ \circ$	-- $0-----$
${ }^{s_{1}}$	0000000	- ○○ $1 \circ \circ \circ \circ \circ$	
$s_{1} 4$	$0000000--$	$\bigcirc \circ \circ \circ 1 \circ \circ \circ \circ$	$----0----$
s_{15}	$0000000--$	$\circ \circ \circ \circ \circ 1 \circ \circ \circ$	
${ }^{s_{1}} 6$	$0000000--$	○○○○○○ $1 \circ \circ$	------0--
${ }^{s_{1}} 7$	00000000001	○○○○○○○ $1 \circ$	0
$s_{1}{ }_{8}$	000000010	- ○○○○○○○ 1	0
$s_{2}{ }_{0}$	00000000--	$0-------$	
$s_{2}{ }_{1}$	$0000000--$	-0-------	- $1 \circ \circ \circ \circ \circ \circ \circ$
$s_{2}{ }_{2}$	$0000000-$		$\bigcirc \circ 1 \circ \circ \circ \circ \circ \circ$
$s_{2}{ }_{3}$	$0000000--$	---0-----	$\bigcirc \circ \circ 1 \circ \circ \circ \circ \circ$
$s_{2} 4$	$0000000 \text { - - }$		$\circ \circ \circ \circ 1 \circ \circ \circ \circ$
${ }^{2} 2_{5}$	$\begin{array}{llllllll} 0 & 0 & 0 & 0 & 0 & 0 & 0 & -- \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array}$	---0--	
${ }^{s_{2} 6}$	$\begin{array}{lllllllll} 0 & 0 & 0 & 0 & 0 & 0 & 0 & - & - \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{array}$	$0--$ -00	
s_{27} s_{2}	$\begin{array}{lllllllll} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{array}$	-0 -0 0	- ○ ○ ○ ○ ○ ○ $1 \circ$ ○○○○○○○○ 1

P	-	--	--	--	--	--	--	--	10
$\begin{aligned} & { }^{{ }^{s} 0_{0}} \\ & { }^{s_{0}} \end{aligned}$	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	$\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}$	---	---	---	---		--	$\begin{array}{ll}10 \\ 1 & 0\end{array}$
$\begin{aligned} & { }^{s_{1} 1_{0}} \\ & s_{1} \\ & \hline \end{aligned}$	$\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	--	--	--	--	--	--	$\begin{array}{ll} 1 & 0 \\ 1 & 0 \end{array}$
$\begin{aligned} & s_{2_{0}} \\ & s_{2} \\ & \hline \end{aligned}$	--	---	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	$\begin{array}{\|ll\|} \hline 0 & 1 \\ 1 & 0 \end{array}$	--	--	--	--	$\begin{array}{ll} 1 & 0 \\ 1 & 0 \end{array}$
$\begin{array}{r} s_{3} 3_{0} \\ s_{3} \\ \hline \end{array}$	$\begin{aligned} & -- \\ & -- \end{aligned}$	---	$\begin{array}{\|ll\|} \hline 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{\|ll\|} \hline 1 & \circ \\ \circ & 1 \end{array}$	--	--		--	$\begin{array}{ll} 1 & 0 \\ 1 & 0 \end{array}$
$\begin{array}{r} s_{4_{0}} \\ s_{4} \\ \hline \end{array}$	--	--	--	---	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	$\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}$	---	--	$\begin{array}{ll} 1 & 0 \\ 1 & 0 \end{array}$
$\begin{aligned} & { }^{s_{5}}{ }_{0} \\ & { }^{s_{5}} \\ & \hline \end{aligned}$	--	--	--	- -	$\begin{array}{ll} \hline 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{ll} \hline 1 \circ \\ \circ & 1 \end{array}$	--	--	$\begin{array}{ll} \hline 10 \\ 10 \end{array}$
$\begin{aligned} & s_{6} 6_{0} \\ & s_{6} \\ & \hline \end{aligned}$	--	--	--	--	--	$--$	$\begin{array}{ll} \hline 1 \circ \\ \circ & 1 \end{array}$	$\begin{array}{lll} \hline 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{ll} \hline 10 \\ 10 \\ 10 \end{array}$
$\begin{aligned} & { }^{s} 7_{0} \\ & s_{7} \end{aligned}$	--	--	-	--	--	$--$	$\begin{array}{lll} \hline 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{ll} \hline 1 & \circ \\ \circ & 1 \end{array}$	$\begin{array}{ll} \hline 10 \\ 1 & 0 \\ 10 \end{array}$
$\begin{aligned} & { }^{s_{8}} 0_{0} \\ & { }^{s_{8}} \end{aligned}$	--	--	$\begin{array}{\|c} -- \\ 0 \end{array}$	--	$\begin{aligned} & -- \\ & 00 \end{aligned}$	$-\overline{-}$	$\left\lvert\, \begin{gathered} -- \\ 0 \end{gathered}\right.$	$\begin{aligned} & \hline-- \\ & 00 \end{aligned}$	1 \circ \circ \circ

(b) result
(a) step 1

Figure 65: Sudoku block, strict 2-state reduction

The research as to what extent missing constraints (see section 14.2) can be re-constructed is still ongoing. E.g., for the sudoku example, the deduction of the missing constraints is very simple.
Constructing additional cells with states that are mutually exclusive, but cannot be forced to require each other, reveals the structure of the missing constraints as shown in section 14.2.

The extra state "or-none-of-the-above" can be eliminated by reasoning, that there are 9 unique states for 9 cells available, so none of them is optional.

14.2 Direct Encoding With All Constraints

Figure 66 shows an excerpt of the same sudoku block problem in direct encoding with all constraints fully specified. The constraints are sufficient for structural logic to detect and resolve naked/hidden singles/pairs/triples/quads immediately by consolidation alone.

P	--	-	-	-	-	-	$---------$	---------
$\begin{aligned} & s_{0_{0}} \\ & s_{0} 0_{4} \\ & s_{0} 0_{5} \\ & s_{0} 0_{6} \\ & s_{0}{ }^{0} \\ & s_{0} \\ & { }^{0} 0_{8} \end{aligned}$	$1 \circ \circ \circ \circ \circ \circ \circ \circ$ $\circ 1 \circ \circ \circ \circ \circ \circ \circ$ ○○ $1 \circ \circ \circ \circ \circ \circ$ $\circ \circ \circ 1 \circ \circ \circ \circ \circ$ $\circ \circ \circ \circ 1 \circ \circ \circ \circ$ $\circ \circ \circ \circ \circ 1 \circ \circ \circ$ $\circ \circ \circ \circ \circ \circ 1 \circ \circ$ $\circ \circ \circ \circ \circ \circ \circ 1 \circ$ $\circ \circ \circ \circ \circ \circ \circ \circ 1$	$0--------$ $-0-------$ $--0------$ $---0-----$ $----0----$ $-----0---$ $------0--$	$\|$$0--------$ $-0-------$ $--0------$ $---0-----$ $----0----$ $-----0---$ $------0--$	$\left\|\begin{array}{l}0-------- \\ -0------- \\ --0------ \\ ---0----- \\ ----0---- \\ -----0--- \\ ------0--\end{array}\right\|$	1000000000 0 $0---------$ 1 $0---------$ 0	$\left.\left\lvert\, \begin{array}{lllllll}0 & - & - & - & - & - & - \\ 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right.\right)$		
$\begin{aligned} & s_{1_{0}} \\ & s_{1} \\ & s_{6} \\ & s_{1} \\ & s_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & 0-------- \\ & -0------- \\ & --0------ \\ & ---0----- \\ & ----0---- \\ & -----0--- \\ & ------0-- \\ & -------0- \end{aligned}$	$1 \circ \circ \circ \circ \circ \circ \circ \circ$ - $1 \circ \circ \circ \circ \circ \circ \circ$ - ○ $1 \circ \circ \circ \circ \circ \circ$ $\circ \circ \circ 1 \circ \circ \circ \circ \circ$ $\circ \circ \circ \circ 1 \circ \circ \circ \circ$ $\circ \circ \circ \circ \circ 1 \circ \circ \circ$ $\circ \circ \circ \circ \circ \circ 1 \circ \circ$ $\circ \circ \circ \circ \circ \circ \circ 1 \circ$ $\circ \circ \circ \circ \circ \circ \circ \circ 1$	$0--------$ $-0-------$ $--0------$ $---0-----$ $----0----$ $-----0---$ $------0--$ $------0-0$ --------0	$\|$$0--------$ $-0-------$ $--0------$ $---0-----$ $----0----$ $-----0---$ $------0--$ $-------0-$ --------0		$\left.\begin{array}{ccc}-0 & 0 & - \\ 0 & 1 & - \\ 0 & - & - \\ - & - & -- \\ -0 & - & 0\end{array}\right)$	$-0-------$ $-0-------$ 0100000000 $-0--------$ $-0-------$ $-0-------$ $-0-------$ $-0-------$ $-0-------$	
$\begin{aligned} & s_{2} 2_{0} \\ & s_{2}{ }_{1} \\ & s_{2}{ }_{2} \\ & s_{2}{ }_{3} \\ & s_{2}{ }_{4} \\ & s_{2} 5 \\ & s_{2}{ }_{6} \\ & s_{2}{ }_{7} \\ & s_{2}{ }_{8} \end{aligned}$		$0--------$ $-0-------$ $--0------$ $---0-----$ $----0----$ $-----0---$ $------0--$ $------0-$	$1 \circ \circ \circ \circ \circ \circ \circ \circ$ - $1 \circ \circ \circ \circ \circ \circ \circ$ $\circ \circ 1 \circ \circ \circ \circ \circ \circ$ $\circ \circ \circ 1 \circ \circ \circ \circ \circ$ $\circ \circ \circ \circ 1 \circ \circ \circ \circ$ $\circ \circ \circ \circ \circ 1 \circ \circ \circ$ $\circ \circ \circ \circ \circ \circ 1 \circ \circ$ $\circ \circ \circ \circ \circ \circ \circ 1 \circ$ ○○○○○○○○ 1	$0--------$ $-0-------$ $--0------$ $---0-----$ $----0----$ $-----0---$ $-----0--$ $------0-0-$ --------0			$--0------$ $--0-------$ 001000000 $--0-------$ $--0-------$ $--0-------$ $--0------$ $--0------$	
$\begin{aligned} & s_{3} s_{0} \\ & s_{3} \\ & s_{1} \\ & s_{3} \\ & s_{3} \\ & s_{3} \\ & s_{4} \\ & s_{5} \\ & s_{3} 6 \\ & s_{3} 7 \\ & s_{3}{ }_{8} \\ & \hline \end{aligned}$	$0--------$ $-0-------$ $--0-----$ $---0-----$ $----0----$ -------- $-----0--$ $------0-$	$\begin{array}{\|l} \hline 0 \\ - \\ - \\ - \end{array}$	$0--------$ $-0-------$ $--0------$ $---0-----$ $----0----$ $-----0---$ $-----0---0-$ $-------0-$ --------0	$1 \circ \circ \circ \circ \circ \circ \circ \circ$ $\circ 1 \circ \circ \circ \circ \circ \circ \circ$ $\circ \circ 1 \circ \circ \circ \circ \circ \circ$ - ○○ $1 \circ \circ \circ \circ \circ$ $\circ \circ \circ \circ 1 \circ \circ \circ \circ$ $\circ \circ \circ \circ \circ 1 \circ \circ \circ$ $\circ \circ \circ \circ \circ \circ 1 \circ \circ$ $\circ \circ \circ \circ \circ \circ \circ 1 \circ$ $\circ \circ \circ \circ \circ \circ \circ \circ 1$				
$\begin{aligned} & s_{4} s_{0} \\ & s_{4} \\ & s_{4} \\ & s_{4} \\ & s_{4} \\ & s_{4}{ }_{4} \\ & s_{4} \\ & \hline \end{aligned}$						$\|$$0--------$ $-0-------$ $--0------$ $---0-----$ $----0----$ $-----0---$ $------0--$ $-------0-$ --------0		$\begin{aligned} & 0-------- \\ & -0------- \\ & --0------ \\ & ---0----- \\ & ----0---- \\ & -----0--- \\ & ------0-- \\ & -------0- \\ & --------0 \end{aligned}$
$\begin{aligned} & { }^{{ }^{s} 5_{0}} \\ & s_{5} \\ & s_{1} \\ & s_{5} \\ & s_{7} \\ & s_{5} \\ & \hline \end{aligned}$	0100000000 $-0--------$ $-0--------$ $-0--------$ $-0--------$ $-0-------$ $-0-------$ $-0-------$	$\left\lvert\,$-0 - - - - - - 0 1 0 0 0 0 0 $0-0\right.$			$\begin{aligned} & 0-------- \\ & -0------- \\ & --0------ \\ & ---0----- \\ & ----0---- \\ & -----0--- \\ & ------0-- \\ & -------0- \\ & --------0 \\ & \hline \end{aligned}$	1 \circ \circ \circ \circ \circ \circ \circ \circ \circ 1 \circ \circ \circ \circ \circ \circ \circ \circ \circ 1 \circ \circ \circ \circ \circ \circ \circ \circ \circ 1 \circ \circ \circ \circ \circ \circ \circ \circ \circ 1 \circ \circ \circ \circ \circ \circ \circ \circ \circ 1 \circ \circ \circ \circ \circ \circ \circ \circ \circ 1 \circ \circ \circ \circ \circ \circ \circ \circ \circ 1 \circ \circ \circ \circ \circ \circ \circ \circ \circ 1	$0--------$ $-0-------$ $--0------$ $---0-----$ $----0----$ $-----0---$ $------0--$ $------0-$ --------0	$\begin{aligned} & 0-------- \\ & -0------- \\ & --0------ \\ & ---0----- \\ & ----0---- \\ & -----0--- \\ & ------0-- \\ & -------0- \\ & --------0 \end{aligned}$
s_{6} s_{6} ${ }^{s} 6_{2}$ ${ }^{s} 6_{3}$ ${ }^{s_{6}} 4$ s_{6} ${ }^{s} 66$ ${ }^{s} 67$ ${ }^{s} 6_{8}$	001000000 $--0------$ $--0------$ $--0------$ $--0------$ $--0------$ $--0------$			$\left\|\begin{array}{l}--0------- \\ --0------- \\ --0 \\ 0\end{array}\right\|$	$0--------$ $-0-------$ $--0------$ $---0-----$ $----0----$ $-----0---$ $------0--$ $-------0-$	$\begin{aligned} & 0-------- \\ & -0------- \\ & --0------ \\ & ---0----- \\ & ----0---- \\ & -----0--- \\ & ------0-- \\ & -------0- \\ & --------0 \end{aligned}$	$1 \circ \circ \circ \circ \circ \circ \circ \circ$ $\circ 1 \circ \circ \circ \circ \circ \circ \circ$ $\circ \circ 1 \circ \circ \circ \circ \circ \circ$ - ○○ $1 \circ \circ \circ \circ \circ$ $\circ \circ \circ \circ 1 \circ \circ \circ \circ$ $\circ \circ \circ \circ \circ 1 \circ \circ \circ$ $\circ \circ \circ \circ \circ \circ 1 \circ \circ$ - ○○○○○○ $1 \circ$ $\circ \circ \circ \circ \circ \circ \circ \circ 1$	$\begin{aligned} & 0-------- \\ & -0------- \\ & --0------ \\ & ---0----- \\ & ----0---- \\ & -----0--- \\ & ------0-- \\ & -------0- \\ & --------0 \end{aligned}$
	000100000 $---0------$ $---0-----$ $---0-----$ $---0-----$ $---0-----$ $---0-----$ $---0-----$				$0--------$ $-0-------$ $--0------$ $---0-----$ $----0----$ $-----0---$ $------0--$ $------0-0$ --------0		$\begin{aligned} & 0-------- \\ & -0------- \\ & --0------ \\ & ---0----- \\ & ----0---- \\ & -----0--- \\ & ------0-- \\ & -------0- \\ & --------0 \end{aligned}$	$1 \circ \circ \circ \circ \circ \circ \circ \circ$ $\circ 1 \circ \circ \circ \circ \circ \circ \circ$ $\circ \circ 1 \circ \circ \circ \circ \circ \circ$ $\circ \circ \circ 1 \circ \circ \circ \circ \circ$ ○○○○ $1 \circ \circ \circ \circ$ $\circ \circ \circ \circ \circ 1 \circ \circ \circ$ $\circ \circ \circ \circ \circ \circ 1 \circ \circ$ $\circ \circ \circ \circ \circ \circ \circ 1 \circ$ $\circ \circ \circ \circ \circ \circ \circ \circ 1$

Figure 66: Sudoku block in enhanced encoding (excerpt)

Figure 67 shows the satoku matrix just before a hidden pair is generated in cells $c_{2_{2}}, c_{3_{3}}$ by removing 2 states from each of the other cells.

P	-------		---------					
$\begin{aligned} & { }^{s_{0} 0_{0}} \\ & s_{0}{ }_{0} \\ & s_{0}{ }_{2} \\ & s_{0}{ }_{0} \\ & s_{0} 0_{4} \\ & s_{0_{5}} \\ & s_{0_{6}} \\ & \hline \end{aligned}$	$\begin{array}{lllllll} 1 & 1 & \circ & \circ & \circ & \circ & \circ \\ \circ & 1 & \circ & \circ & \circ & \circ & \circ \\ \circ & \circ & 1 & \circ & \circ & \circ & \circ \\ \circ & \circ & \circ & 1 & \circ & \circ & \circ \\ \circ & \circ & \circ & \circ & 1 & \circ & \circ \\ \circ & \circ & \circ & \circ & \circ & 1 & \circ \\ \circ & \circ & \circ & \circ & \circ & \circ & 1 \end{array}$	- $0------$	$\begin{aligned} & --0------ \\ & ---0----- \\ & ----0---- \\ & -----0--- \\ & ------0-- \\ & -------0- \\ & --------0 \end{aligned}$					
$\begin{aligned} & s_{1} 1_{0} \\ & s_{1} \\ & s_{1} \\ & s_{1} \\ & s_{1} \\ & s_{3} \\ & s_{4} \\ & s_{1} \\ & s_{1} \\ & s_{6} \\ & s_{1} \\ & \hline \end{aligned}$	0	$1 \circ \circ \circ \circ \circ \circ \circ$ $\circ 1 \circ \circ \circ \circ \circ \circ$ $\circ \circ 1 \circ \circ \circ \circ \circ$ $\circ \circ \circ 1 \circ \circ \circ \circ$ $\circ \circ \circ \circ 1 \circ \circ \circ$ $\circ \circ \circ \circ \circ 1 \circ \circ$ $\circ \circ \circ \circ \circ \circ 1 \circ$ $\circ \circ \circ \circ \circ \circ \circ 1$	$\begin{array}{llllllll} \hline-0 & - & - & - & - & - & - & - \\ --0 & - & 0 & 0 & 0 & 0 & 0 & 0 \\ --0 & 0 & 0 & 0 & 0 & 0 & 0 \\ --0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -- & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ --0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -- & 0 & 0 & 0 & 0 & 0 & 0 \\ -- & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array}$	$\|$-0 - - - - - - - 0 0 0 0 0 0 0 --0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 -- 0 0 0 0 0 0 0 -- 0 0 0 0 0 0 -- 0 0 0 0 0 0 0 -- 0 0 0 0 0 0		$\left.\begin{array}{lll}------ & 0 & - \\ - & - \\ ------ & 0 & 0 \\ 0 \\ ------ & 0 & 0\end{array}\right)$		
$\begin{aligned} & s_{2} s_{0} \\ & s_{2} s_{1} \\ & s_{2}{ }_{2} \\ & s_{2}{ }_{3} \\ & s_{2} 4 \\ & s_{2}{ }_{5} \\ & s_{2} 6 \\ & s_{2}{ }_{7} \\ & s_{2} \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ - \end{gathered}$		$1 \circ \circ \circ \circ \circ \circ \circ \circ$ - $1 \circ \circ \circ \circ \circ \circ \circ$ ○○ $1 \circ \circ \circ \circ \circ \circ$ $\circ \circ \circ 1 \circ \circ \circ \circ \circ$ $\circ \circ \circ \circ 1 \circ \circ \circ \circ$ ○○○○○ $1 \circ \circ \circ$ ○○○○○○ $1 \circ \circ$ ○○○○○○○ $1 \circ$ ○○○○○○○○ 1	0 - - - - - - - - 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0				
$\begin{aligned} & s_{3_{0}} \\ & s_{3}{ }_{1} \\ & s_{3}{ }_{2} \\ & s_{3} \\ & s_{3} \\ & s_{4} \\ & s_{5} \\ & s_{3} \\ & s_{6} \\ & s_{7} \\ & s_{3} 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$		$0--------$ 100000000 100000000 100000000 100000000 100000000 100000000 100000000 100000000	$1 \circ \circ \circ \circ \circ \circ \circ \circ$ $\circ 1 \circ \circ \circ \circ \circ \circ \circ$ - ○ $1 \circ \circ \circ \circ \circ \circ$ $\circ \circ \circ 1 \circ \circ \circ \circ \circ$ $\circ \circ \circ \circ 1 \circ \circ \circ \circ$ $\circ \circ \circ \circ \circ 1 \circ \circ \circ$ $\circ \circ \circ \circ \circ \circ 1 \circ \circ$ $\circ \circ \circ \circ \circ \circ \circ 1 \circ$ ○○○○○○○○ 1		$\left.\begin{array}{\|lll}-------- & - & 0 \\ ------- & - & 0\end{array}\right)$		
$\begin{aligned} & s_{4} 4_{0} \\ & s_{4} \\ & s_{1} \\ & s_{2} \\ & s_{4} \\ & s_{6} \\ & s_{4} \\ & s_{4} \\ & { }^{4} 8 \end{aligned}$				$\left\|\begin{array}{ccccccccc} - & - & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{array}\right\|$	$1 \circ \circ \circ \circ \circ \circ \circ \circ$ - $1 \circ \circ \circ \circ \circ \circ \circ$ - ○ $1 \circ \circ \circ \circ \circ \circ$ ○○○ $1 \circ \circ \circ \circ \circ$ $\circ \circ \circ \circ 1 \circ \circ \circ \circ$ $\circ \circ \circ \circ \circ 1 \circ \circ \circ$ ○○○○○○ $1 \circ \circ$ $\circ \circ \circ \circ \circ \circ \circ 1 \circ$ ○ ○ ○ ○ ○ ○ ○ ○ 1		$\left.\begin{array}{l}0-------- \\ -0------- \\ --0------ \\ ---0----- \\ ----0---- \\ -----0---- \\ ------0 \\ ------0\end{array}\right)$	-- -- -- -- 0 0 0 0 0
$\begin{aligned} & { }^{s_{5}}{ }_{0} \\ & s_{5} \\ & s_{1} \\ & s_{5}{ }_{2} \\ & s_{5}{ }_{3} \\ & s_{5}{ }_{4} \\ & s_{5} 5_{5} \\ & s_{5} 6 \\ & { }_{5}^{5} 5 \\ & s_{7} \\ & s_{5} \\ & \hline \end{aligned}$		- 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0	$\begin{array}{ccccccccc}--- & - & - & 0 & - \\ --- & - & - & 0 & - & - \\ --- & - & - & - & 0 & - & - \\ --- & - & - & - & 0 & - & - \\ --- & - & - & - & 0 & - & - \\ --0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$		00	$1 \circ \circ \circ \circ \circ \circ \circ \circ$ $\circ 1 \circ \circ \circ \circ \circ \circ \circ$ $\circ \circ 1 \circ \circ \circ \circ \circ \circ$ $\circ \circ \circ 1 \circ \circ \circ \circ \circ$ $\circ \circ \circ \circ 1 \circ \circ \circ \circ$ $\circ \circ \circ \circ \circ 1 \circ \circ \circ$ $\circ \circ \circ \circ \circ \circ 1 \circ \circ$ $\circ \circ \circ \circ \circ \circ \circ 1 \circ$ $\circ \circ \circ \circ \circ \circ \circ \circ 1$		$\begin{gathered} - \\ -- \\ \hline- \\ \hline 0 \\ 0 \\ 0 \\ 0 \end{gathered}$
$\begin{aligned} & s_{6}{ }_{6} \\ & s_{6} \\ & s_{1} \\ & s_{6} \\ & s_{2} \\ & s_{3} \\ & s_{6}{ }_{4} \\ & s_{6}{ }_{5} \\ & s_{6} 6 \\ & s_{6} \\ & s_{7} \\ & s_{6} 8 \\ & \hline \end{aligned}$		-- - - - - - 0 - - - - - -0 - - - - - - 0 - - - - - 0 - - - - - - 0 - - - - - - - 0 - 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0			$\begin{array}{rrr} -0 & 0 & 0 \\ -0 & 0 & 0 \end{array}$	$\begin{array}{lll} -0 & 0 & 0 \\ -0 & 0 & 0 \end{array}$	$1 \circ \circ \circ \circ \circ \circ \circ \circ$ - $1 \circ \circ \circ \circ \circ \circ \circ$ - ○ $1 \circ \circ \circ \circ \circ \circ$ ○○○ $1 \circ \circ \circ \circ \circ$ - ○○○ $1 \circ \circ \circ \circ$ - ○○○○ $1 \circ \circ \circ$ ○○○○○○ $1 \circ \circ$ - ○○○○○○ $1 \circ$ ○○○○○○○○ 1	
	------0 ------0 ------0 ------0 ------0 00000001 ------0 ------0				$\left.\begin{array}{l}0-------- \\ -0------- \\ --0------ \\ ---0------ \\ ----0----- \\ -----0----- \\ ------0\end{array}\right)$		$\left.\begin{array}{l}0-------- \\ -0------- \\ --0------ \\ ---0----- \\ ----0---- \\ -----0 \\ ----- \\ ----- \\ ------0\end{array}\right)$	$1 \circ \circ \circ \circ \circ \circ \circ \circ$ $\circ 1 \circ \circ \circ \circ \circ \circ \circ$ $\circ \circ 1 \circ \circ \circ \circ \circ \circ$ $\circ \circ \circ 1 \circ \circ \circ \circ \circ$ $\circ \circ \circ \circ 1 \circ \circ \circ \circ$ $\circ \circ \circ \circ \circ 1 \circ \circ \circ$ $\circ \circ \circ \circ \circ \circ 1 \circ \circ$ $\circ \circ \circ \circ \circ \circ \circ 1 \circ$ $\circ \circ \circ \circ \circ \circ \circ \circ 1$

Figure 67: Sudoku block in enhanced encoding, 1 step before hidden pair detection in $c_{2_{2}}, c_{3_{3}}$

Figure 68 shows the satoku matrix with a hidden pair in cells $c_{2_{2}}, c_{3_{3}}$.

P			--0000000	0000	0	00	- 00	-------00
${ }^{s}$	1 。		--0000000	--0000000	-00	-00	-00	-----0-00
s_{0}	$\bigcirc 1 \circ \circ \circ \circ \circ$	-0-----	0000000		00	00	00	-----0-00
$s_{0_{2}}$	$\bigcirc \circ 1 \circ \circ \circ \circ$		$--00000000$		00	0	0	0
$s_{0}{ }_{3}$	$\bigcirc \circ \circ 1 \circ \circ \circ$		00000000		000001000	- $0-00$	0-0 0	00
$s_{0}{ }_{4}$	$\bigcirc \circ \circ \circ 1 \circ \circ$		0000	-0000000	0-00	000001000	00	00
	$\bigcirc \circ \circ \circ \circ 1 \circ$			--0000000000	0	-----0-000	0	00
s_{0}			$--0000000$	$--0000000$		0	0	000001000
		$1 \circ \circ \circ \circ \circ \circ$	--0000000	--0000000	------000	O	0	------000
$s_{1}{ }_{1}$		-	0	0	0	00	000	00
$s_{1}{ }_{2}$		\bigcirc	--000000000	--0	0	0	00	-000
$s_{1}{ }_{3}$			--0000000	--0	0	0	0	0
$s_{1}{ }_{4}$		$\bigcirc \circ \circ \circ 1 \circ \circ$	--0000000		0	000000100	000	00
${ }^{s_{1}}{ }_{5}$		-	--00000000	0	0	0	000000100	0
s_{1}		- ○○○○○ 1	--0000000	00000	0	0	0	000000100
			$1 \circ \circ \circ \circ \circ \circ \circ \circ$	0	0	0	0	0
$s_{2}{ }_{1}$			$\bigcirc 1 \circ \circ \circ \circ \circ \circ \circ$	1	0	-------000	0	$-------00$
${ }^{2} 2$	00	000000	-	0		0 0 0 0 0 0 0 0 0 0 0		
${ }^{2} 2$	000000000	0000000	$\bigcirc \circ \bigcirc \circ \circ \circ \circ \circ \circ$	000000000000	0000000000		000000000	00000000000
$s_{2}{ }_{4}$	$\begin{array}{lllllll} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array}$		- ○○○○○○○○	0000000000		000000000	000000000 000000000	000000000 000000000
$\begin{aligned} & s_{2}{ }_{5} \\ & s_{2} \end{aligned}$	$\begin{array}{lllllll} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array}$	$\begin{array}{llllllll} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array}$	○○○○○○○○○	$\begin{array}{lllllllll} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array}$	$\begin{array}{lllllllll} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array}$	$\begin{array}{lllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$	000000000 000000000	$\begin{array}{lllllllll} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array}$
$\begin{aligned} & s_{2} \\ & s_{2} \end{aligned}$	$\begin{array}{llll}0 & 0 & 0 & 0\end{array} 0000$	0000000	- ○○○○○○○○	000000000	000000000	000000000	000000000	0
+ ${ }_{2}{ }_{8}$	0000000	0000000	$\bigcirc \circ \circ$	000000000	000000000	000000000	000000000	000000000
$s_{3}{ }_{1}$			100000000	$\bigcirc 1 \circ \circ \bigcirc \circ \circ \circ \circ$	00	0	-00	00
$s_{3}{ }_{2}$	00	0000000	O 0000000000	- ○○○○○○○○	00000000000	0000000000	000000000	0000000000
$s_{3}{ }_{3}$	00	0000000000	00000000000	- ○○○○○○	00000000000	00000000000	00000000000	0 0 0 0 0 0 0 0 0 0
$s_{3}{ }_{4}$	00	0000000	000000000	-		0 0 0 0 0 0 0 0 0 0	0000000000	
${ }^{3} 3_{5}$	0000000000			$\bigcirc \circ \circ \circ \circ \circ$		0000000000000		000000000
${ }^{s_{3}}{ }_{6}$	$\begin{array}{lllllll} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array}$	$\begin{array}{llllllll} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array}$	0000000000 000000000	\bigcirc	0000000000 0000000000	$\begin{array}{llllllllll} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array}$	000000000 000000000	$\begin{array}{lllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$s_{3}{ }_{7}$ s_{3}	$\begin{array}{llllllll} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array}$	$\begin{array}{llllllll} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array}$	$\begin{array}{lllllllll} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array}$	\bigcirc	$\begin{array}{lllllllll} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array}$	$\begin{array}{lllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$	000000000 000000000	$\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
${ }^{3} 38$	0000000	0000000	000000000	$\bigcirc \circ \circ \circ \circ \circ \circ \circ \circ$	000000000	000000000	000000000	000000000
$s_{4}{ }_{0}$			--0	--		0	0	0
$s_{4}{ }_{1}$			$--0000000$	--0		0	0	$-0-----00$
$s_{4}{ }_{2}$			-0000000	--00000	$\bigcirc \circ 1 \circ \circ \circ \bigcirc \circ \circ$	- 0	- 00	-00
$s_{4}{ }_{3}$			$--0000000$	- 0		0	- 00	0
s_{4}^{4}	---0---		0	--0		0	- 00	0
${ }^{s_{4}}{ }_{5}$	00010	00001000	--0000000000	--00000	-	0	-00	0-00
${ }^{4} 46$		0 0 0 0 1 0 0 0	--0000000	--00000000	$\bigcirc \circ \circ \circ \circ \circ 1 \circ \circ$)	0	0
${ }^{4} 4{ }_{4}$	0000000			0 0 0 0 0 0 0 0 0 0 0 0	- ○○○○○○○○			
${ }^{4} 48$	0000000	0000000	000000000	00000000	- ○○○○○○○○	000000000	00000000	000000000
${ }^{s} 5_{0}$			--00000000	--00000000				
$s_{5}{ }_{1}$			0	--0	-0	-	- 00	-0-----
${ }^{5} 5_{2}$			-0	--	$--0---0^{0} 0$	\bigcirc	0	0
s_{5}			- 0	--0	- 0	\bigcirc	- 00	0
$s_{5}{ }_{4}$	0				0	$\bigcirc \circ \circ \circ 1 \circ \circ \circ \circ$	-00	-00
$s_{5}{ }_{5}$	0000100		-0000000	--00000	-0-00	\bigcirc	0	00
${ }^{5} 56$		0 0 0 0 0 0 1 0 0	-0000000	$-0^{0} 00000000$	0	$\bigcirc \circ \circ \circ \circ \circ 1 \circ \circ$	- 000	00
${ }^{5} 57$		000000000	0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0	$\bigcirc \circ \circ \circ \circ \circ \circ \circ \circ$		0
$s_{5}{ }_{8}$	0000000	0000000	000000000	000000000	000000000	$\bigcirc \circ \circ \circ \circ \circ \circ \circ \circ$	000000000	000000000
${ }^{s} 60$								0
$s_{6}{ }_{1}$			- 0	--0	- 00	-		-0-----00
${ }^{s} 6_{2}$			- 0		-00	-0	\bigcirc	--0----00
$s_{6}{ }_{3}$	-----0-				00	---0---00		$-0^{0} 0$
$s_{6}{ }_{4}$			-00000000	$--0000000$	-00		\bigcirc	--00
$\stackrel{s}{6}_{6}$			$\left.\begin{array}{l} --0 \\ - \\ - \\ - \end{array} 0 \begin{array}{llllll} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 \end{array}\right)$	$\begin{array}{llllllll} --0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -- & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array}$	$\begin{array}{rrrr} -0-0 & 0 \\ - & 0 & 0 & 0 \end{array}$	$\begin{gathered} 0-0 \\ -0 \\ -0 \end{gathered} 0$	○○○○○ $1 \circ \circ \circ$ - ○○○○○ $1 \circ \circ$	-0 00
$\begin{aligned} & s_{6} \\ & { }_{6} \\ & \hline \end{aligned}$	0000000	- $\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$				----- 0 - 00000	- ○○○○○ $1 \circ \circ$ - ○ ○ ○ ○ ○ ○ ○ ○	000000000
${ }^{6} 6_{8}$	0000000	0000000	000000000	000000000	000000000	000000000	$\bigcirc \circ \circ \circ \circ \circ \circ \circ \circ$	000000000
${ }^{s} 7_{0}$	------0	0	-	--	0	- 00	0------00	
${ }^{5} 7_{1}$	------0	------0	0	--0	$-0-----00$	0	- 00	$\bigcirc 1 \circ \circ \circ \circ \circ \circ \circ$
${ }^{5} 7_{2}$	------0	0		--0000000000	-00	-00	- 00	$\bigcirc \circ 1 \circ \circ \circ \circ \circ \circ$
${ }^{5} 73$	------0	0	- 0000000	--00000000	- 0	- 00	--00	
${ } 7_{7}{ }_{4}$	--0	0	-0000000	--0000000000	$0--00$	- 00	-00	\bigcirc
${ }^{5} 75$	0000001	------0			- 00	0-0 0	0-0 0	$\bigcirc \circ \circ \circ \circ 1 \circ \circ \circ$
${ }^{s} 7_{6}$	--0	0 0 0 0 0 0 0 0 1	$--0000000$		- 000	- 000	$--000$	$\bigcirc \circ \circ \circ \circ \circ 1 \circ \circ$
${ }^{s_{7}}$	0000000	0 0 0 0 0 0 0 0 0		00000000000	00000000000	000000000	000000000	$\bigcirc \circ \bigcirc \circ \circ \circ \bigcirc \circ \circ$
${ }^{{ }^{7}}{ }_{8}$	0000000	000000	00000000	00000000	0000000	0000000	000000000	$\bigcirc \circ \circ \circ \circ \circ$

Figure 68: Sudoku block in enhanced encoding, hidden pair detected in $c_{2_{2}}, c_{3_{3}}$

Rintanen writes[RINTANEN]: "The most primitive non-trivial invariant has the form $\neg a \vee \neg b$, saying that a and b cannot be true simultaneously. Adding this type of constraints in the SAT encodings of planning is often critical for its efficiency."
The sudoku example shows, that this is not only often, but always.

15. Constructing Variable Sets

E.g. 00-experimental/genalea-40-171-force-conflict/genalea-40-171-350409699.x.v-004-opt.fca

16. Identifying Relevant Problem

|:todo:| Identifying Relevant Problem
Merge dense cells.
For sparse cells: construct conflict cell and move to non-essential section.
If result is in problem, delete from problem.
E.g.,

00-experimental/x1n/x1n3-1in1.x.v-002.mtx
00-experimental/x1n/x1n3-2in2.x.v-002.mtx
00-experimental/x1n/x1n3-3in3-spread.x.v-003.mtx
00-experimental/x1n/x1n3-3in3.x.v-005.mtx

See also:
00-experimental/ex-bipartite-3cage-resolve-cfl/ex-bipartite-3cage-resolve-cfl-002.mtx

17. Multi-value Logic Loops

|:todo:| Multi-value Logic Loops strategiy
Strategy:

- construct conflict cells to determine core problem
- separate "or-none" state
- fully merge non-excluded states referenced by "or-none" state
- 2-state partition

The hardest problems are multi-value problems as introduced with the sudoku example, that are not fully constrained (ambiguous) and contain unsatisfiable loops.

Example: hgen2-v450-s41511877.shuffled-as.sat03-1682.used-as.sat04-816.cnf from SAT-competition 2003.

Quote from the generator:
generate 2-clauses expressing $\sum_{i \in I} x_{i} \leq 1$ for disjoint I's $1 . . D D D, D D D+1 . .2 * D D D$, \ldots... then generate random clauses of length L (defined below) expressing $\sum_{i \in J} \neg x_{i} \geq 1$. Currenly, $D D D$ is set to $5 . L$ is defined so that the latter clauses express $\sum_{\text {all }} x_{i} \geq M+1$ while the former give $\sum \ldots \leq M$. Note that for certain DDD and L that would result in PHP.

It is still fun to watch a CDCL solver running into all of the terminal impossible states without ever learning anything substantial.

Note: As soon as the number of irredundant clauses reads 54 instead of 1575 , I will know, that somebody has discovered structural logic.

```
c Lingeling SAT Solver
c
c Version azd 0d997521ad2e7d4e94f5d74a4665455b91309b62
c
c Copyright (C) 2010-2014 Armin Biere JKU Linz Austria.
c All rights reserved.
c
c released Wed Oct 29 15:03:13 CET 2014
c reading input file hgen2-v450-s41511877.shuffled-as.sat03-1682.used-as.sat04-816.cnf
c no embedded options
c found 'p cnf 450 1575' header
c read 450 variables, 1575 clauses, 4725 literals in 0.00 seconds
c
c seconds irredundant redundant clauses agility height
c variables clauses conflicts large ternary binary glue MB
c
c S [lllllllllllllll
```



```
c S [llllllllllllll
```


Structural Single State Mutinex Logic

c	S 5.0	450	1575	154369	7724	0	0	29	20.1	34.3	2
C	S 10.0	450	1575	278802	14700	0	0	30	20.3	34.7	4
c	S 20.0	450	1575	444808	26735	0	0	29	20.5	34.9	4
c	S 30.0	450	1575	667548	17164	0	0	29	20.8	35.3	3
c	S 40.0	450	1575	843123	22394	0	0	29	20.8	35.3	3
c	S 50.0	450	1575	976735	15355	0	0	29	20.8	35.4	3
c	S 60.0	450	1575	1125056	29763	0	0	29	20.8	35.3	6
c	S 120.0	450	1575	1742517	50713	0	0	28	20.8	35.3	8
c	S 180.0	450	1575	2453422	27218	0	0	29	20.6	34.9	4
c	S 240.1	450	1575	3325062	44995	0	0	28	21.0	35.3	8
c	S 300.0	450	1575	3879415	59214	0	0	29	21.2	35.3	10
c	S 600.1	450	1575	6265267	103649	0	0	28	21.4	35.2	21
c	S 900.2	450	1575	7770967	120941	0	0	28	21.6	35.3	24
c	S 1800.0	450	1575	14553134	77217	0	0	29	22.0	36.3	11
c	S 2700.1	450	1575	18670695	68006	0	0	29	22.2	36.6	9
c	S 3600.1	450	1575	22700104	149509	0	0	29	22.4	37.1	28
c	S 4500.2	450	1575	25304933	173846	0	0	28	22.6	37.3	29
c	S 5400.1	450	1575	27526480	223181	0	0	28	22.6	37.4	42
c	S 6300.4	450	1575	29565854	194097	0	0	29	22.7	37.5	32
c	S 7200.4	450	1575	31400601	231189	0	0	29	22.7	37.5	40
c											
c	seconds	irredundant			redundant clauses agility					height	
c		variables clauses conflicts			large te	r		glue			MB
c											
c	S 10800.1	450	1575	40396499	79772		0	29	22.5	37.1	11
C	S 14400.0	450	1575	55618031	98857		0	29	22.7	37.4	13
	S 18000.3	450	1575	65189102	189649		0	28	22.7	37.3	27
	S 21600.8	450	1575	71635072	314341		0	28	22.6	37.1	58
	S 25200.4	450	1575	80144153	207753		0	28	22.6	37.0	33
	S 28800.7	450	1575	86764505	283561		0	28	22.6	36.8	49
c	S 32400.2	450	1575	92031841	304383		0	28	22.5	36.7	51

18. Schaefer's Dichotomy Theorem

Schaefer's Dichotomy Theorem[wiki-sdt] (SDT) states:
... the problem $S A T(S)$ is viewed as a constraint satisfaction problem over the Boolean domain. In this area, it is standard to denote the set of relations by Γ and the decision problem defined by Γ as $\operatorname{CSP}(\Gamma)$.

An operation $f: D^{m} \rightarrow D$ is a polymorphism of a relation $R \subseteq D^{k}$ if, for any choice of m tuples $\left(t_{11}, \ldots, t_{1 k}\right), \ldots,\left(t_{m 1}, \ldots, t_{m k}\right)$ from R, it holds that the tuple obtained from these m tuples by applying f coordinate-wise, i.e. $\left(f\left(t_{11}, \ldots, t_{m 1}\right), \ldots, f\left(t_{1 k}, \ldots, t_{m k}\right)\right)$, is in R. That is, an operation f is a polymorphism of R if R is closed under f : applying f to any tuples in R yields another tuple inside R. A set of relations Γ is said to have a polymorphism f if every relation in Γ has f as a polymorphism.

The practical disadvantage of SDT is, that it fully depends on the encoding of a satisfiability problem. Adding one clause, ($a \vee b \vee c$), to a problem Γ, which is otherwise decidable in polynomial time, makes Γ NP-complete, since there is no longer a polymorphism f for every relation in Γ.

SDT still holds, since $\mathrm{P} \subseteq \mathrm{NP}$, but it is no longer "easy to check if any of the tractability conditions hold".

Translating an XORSAT problem Γ_{X} to a CNF problem Γ_{C} preserving satisfiability in the usual manner:

$$
\begin{array}{ll}
\Gamma_{X}= & (a \oplus b \oplus c) \\
\Gamma_{X} \mapsto \Gamma_{C}: & \\
(\neg a \vee \neg b \vee c) & \wedge \\
(\neg a \vee b \vee \neg c) & \wedge \\
(a \vee \neg b \vee \neg c) & \wedge \\
\left.\left(\begin{array}{l}
a \vee
\end{array}\right) \quad b \vee c\right) &
\end{array}
$$

also makes Γ_{X} NP-complete for decision algorithms. This is the incentive for adding XOR-clause detection to CDCL SAT solvers. However, that is no remedy, since XOR detection again depends on the "proper" encoding.

When the structural decomposition is taken one step further by encoding Γ_{C} with direct encoding to $\Gamma_{X 1}$ preserving satisfiability (at-most-one clauses omitted):

$\Gamma_{C} \mapsto \Gamma_{X 1}:$
$(s 0 \vee ~ s 1 \vee ~ s 2)$
$(t 0 \vee ~ t 1 \vee ~ t 2) ~$
$(u 0 \vee u 1 \vee u 2)$
$(v 0 \vee v 1 \vee v 2)$
$(\neg s 0 \vee \neg u 0)$
($\neg s 0 \vee \neg v 0$)
$(\neg s 1 \vee \neg t 1)$
$(\neg s 1 \vee \neg v 1)$
$(\neg s 2 \vee \neg t 2)$
$(\neg s 2 \vee \neg u 2)$
$(\neg t 0 \vee \neg u 0)$
$(\neg t 0 \vee \neg v 0)$
$(\neg t 1 \vee \neg u 1)$
$(\neg t 2 \vee \neg v 2)$
$(\neg u 1 \vee \neg v 1)$
$(\neg u 2 \vee \neg v 2)$,

XOR-clause detection based on CNF encoding fails and CDCL solvers indeed confirm SDT in that regard by taking up exponentially more time to determine unsatisfiabiliy.
What SDT does not explain is the following effect. Translate Γ_{C} to $\Gamma_{C M}$, by applying the tautology

$$
(p \vee q \vee r)=((p) \vee(\neg p \wedge q) \vee(\neg p \wedge \neg q \wedge r))
$$

to each clause of Γ_{C} :

$$
\Gamma_{C} \mapsto \Gamma_{C M}:
$$

$$
(a \wedge \neg b) \quad \vee
$$

$$
(a \wedge b \wedge c)
$$

$$
(a \wedge b) \quad \vee
$$

$$
(a \wedge \neg b \wedge \neg c) \quad) \wedge
$$

$$
(\quad(a)
$$

V

$$
(\neg a \wedge \neg b) \quad \vee
$$

$$
(\neg a \wedge b \wedge \neg c) \quad) \wedge
$$

$$
(a) \vee
$$

$$
(\neg a \wedge b) \quad \vee
$$

$$
(\neg a \wedge \neg b \wedge \quad c) \quad)
$$

Translating $\Gamma_{C M}$ to $\Gamma_{X 1 M}$ with direct encoding, preserving satisfiability (at-most-one clauses omitted):

$\Gamma_{C M} \mapsto \Gamma_{X 1 M}:$
$(s 0 \vee ~ s 1 \vee ~ s 2)$
$(t 0 \vee ~ t 1 \vee ~ t 2) ~$
$(u 0 \vee u 1 \vee u 2)$
$(v 0 \vee v 1 \vee v 2)$
$(\neg s 0 \vee \neg t 1)$
$(\neg s 0 \vee \neg t 2)$
$(\neg s 0 \vee \neg u 0)$
$(\neg s 0 \vee \neg v 0)$
$(\neg s 1 \vee \neg t 0)$
$(\neg s 1 \vee \neg t 1)$
$(\neg s 1 \vee \neg u 1)$
$(\neg s 1 \vee \neg u 2)$
$(\neg s 1 \vee \neg v 1)$
$(\neg s 1 \vee \neg v 2)$
$(\neg s 2 \vee \neg t 0)$
$(\neg s 2 \vee \neg t 2)$
$(\neg s 2 \vee \neg u 1)$
$(\neg s 2 \vee \neg u 2)$
$(\neg s 2 \vee \neg v 1)$
$(\neg s 2 \vee \neg v 2)$
$(\neg t 0 \vee \neg u 0)$
$(\neg t 0 \vee \neg v 0)$
$(\neg t 1 \vee \neg u 1)$
$(\neg t 1 \vee \neg u 2)$
$(\neg t 1 \vee \neg v 1)$
$(\neg t 1 \vee \neg v 2)$
$(\neg t 2 \vee \neg u 1)$
$(\neg t 2 \vee \neg u 2)$
$(\neg t 2 \vee \neg v 1)$
$(\neg t 2 \vee \neg v 2)$
$(\neg u 0 \vee \neg v 1)$
$(\neg u 0 \vee \neg v 2)$
$(\neg u 1 \vee \neg v 0)$
$(\neg u 1 \vee \neg v 1)$
$(\neg u 2 \vee \neg v 0)$
$(\neg u 2 \vee \neg v 2)$,

shows that there are significantly more conflict clauses than for $\Gamma_{X 1} . \Gamma_{X 1 M}$ becomes significantly "easier" for CDCL solvers than $\Gamma_{X 1}$.
The encoding effects can be easily verfied by applying the encodings to any random CNF problem (however, not CSP problems). The most significant effects can be seen with unsatisfiable instances of 3-XORSAT and SAT- solvers with Gausssian elimintation, e.g., mod2-3cage-unsat-9-10.cnf from http://www.cs.helsinki.fi/u/mjarvisa/benchmarks/:

Lingeling Version ats 57807c8f410a9e676816984a0ad0c410e485bcae
$\Gamma_{C} \quad \mathrm{c}$ found 'p cnf 87232 ' header
c 33531 decisions, 197182.0 decisions/sec
c 0.2 seconds, 1.9 MB
$\Gamma_{X 1} \quad$ c found 'p cnf 6962320 ' header
с S 36000.1464139222942225624287420761313220 .026 .596
interrrupted after 10 hours
$\Gamma_{X 1 M} \quad$ c found 'p cnf 6966688 ' header
c 8647016 decisions, 68950.9 decisions/sec
c 125.4 seconds, 16.3 MB

Since all encodings are derived from the same problem Γ_{X}, it appears strange, that their "hardness" for decision algorithms varies to such a great extent.

Similar observations were made by:
Formalizing Dangerous SAT Encodings
http://dx.doi.org/10.1007/978-3-540-72788-0_18
Comes closest to giving an explanation for the encoding sensitivity of DPLL solvers.
Efficient CNF Encoding of Boolean Cardinality Constraints
http://dx.doi.org/10.1007/978-3-540-45193-8_8
Demonstrates that problem encoding is essential for DPLL solvers.
Bai, Yun, and Yan Zhang. "Program Completion as Constraint Satisfaction: Tight Logic Programs Revisited."
Elaborates on the fact, that SDT is impractical to determine tractability.
The Order Encoding: From Tractable CSP to Tractable SAT
http://dx.doi.org/10.1007/978-3-642-21581-0_34
Emphasizes the importance and especially limits of using SDT to evaluate an encoding.
But none of them gives an explanation other than "arc-consistency" for DPLL solvers. This effect is found in SSSML as "missing at-least-one constraints" (section 20).
For par16-2-c.cnf:
$\Gamma_{C}:$

```
c found 'p cnf 349 1392' header
c
c 0.028 43% simplifying
c 0.037 57% search
c ====================================
c 0.065 100% all
c
c 2622 decisions, 40378.8 decisions/sec
c 2412 conflicts, 37144.8 conflicts/sec
c 127364 propagations, 2.0 megaprops/sec
c 0.1 seconds, 0.3 MB
```

$\Gamma_{X 1}:$
c found 'p cnf 4054 72899' header
c

```
c 3.228 35% simplifying
c 6.037 65% search
c ====================================
c 9.266 100% all
c
c 164466 decisions, 17749.2 decisions/sec
c }68105\mathrm{ conflicts, 7349.9 conflicts/sec
c 24110566 propagations, 2.6 megaprops/sec
c 9.3 seconds, 7.5 MB
```

$\Gamma_{X 1 M}:$
c found 'p cnf 2348 56195' header
c
c 0.34573% simplifying
c 0.13127% search
c ===================================
c 0.476100% all
c
c 6160 decisions, 12941.5 decisions/sec
c 5569 conflicts, 11699.9 conflicts/sec
c 629612 propagations, 1.3 megaprops/sec
c 0.5 seconds, 2.3 MB

19. Partial Distributive Expansion

Instead of actually performing distributive expansion, only conflicts are propagated in a round based algorithm until no new conflicts are found:

$$
\begin{array}{lll}
& (a \vee b) & (\neg a \vee c) \\
=((a \wedge c) \vee b) & ((\neg a \wedge b) \vee(c \wedge d)) & ((\neg c \wedge \neg \wedge \neg a) \vee d) \\
=((a \wedge c \wedge d) \vee b) & ((\neg a \wedge b) \vee(c \wedge d)) & ((\neg c \wedge \neg a \wedge b) \vee d)
\end{array}
$$

When performed in a matrix, where each literal is mapped to its maximal length, the complexity of the algorithm is determined by number of literals $l=k \cdot m$ and space requirements l^{2}. Complexity of consolidation is determined by comparisons per round l^{3}, worst case l^{P}.

20. Hardness - Propositional Argument

The reason for the difference in hardness of problem structure between 2-state and 3-state problems is prominently visible in propositional logic.
As culprits of hardness, we have identified the relationship of "parity" XOR, to "exactly-one" X1, and the ambiguous indirect loops that can be constructed with them. Also the multi-value encoding without explicit "at-least-one" constraints, leading to implicit "at-most-one" X1N, where the "ornone" alternative has to be proved false.
Mapping a 2-state disjunction of conjunctions to a 2-state X1 is the primary mapping of 2-SAT problems to a satoku matrix:

$$
\begin{aligned}
& \mathrm{OR}(p, q) \\
= & (p \vee q \\
= & \left(\begin{array}{ll}
(p) \vee(\neg p \wedge & q)
\end{array}\right) \\
= & \left(\begin{array}{ll}
(q) \vee(\neg q \wedge & p)
\end{array}\right)
\end{aligned}
$$

p	q	XOR	X1	X1N	AND	OR
0	0	0	0	1	0	0
0	1	1	1	1	0	1
1	0	1	1	1	0	1
1	1	0	0	0	1	1

Table 4: 2-state truth tables XOR, X1, X1N

Table 4 shows, that XOR and X 1 are equivalent in 2 -state problems, so a 2 -state XOR can be expressed by a 2 -state X1:

$$
\left.\begin{array}{rl}
& \operatorname{XOR}(p, q) \\
= & (\quad p \oplus q \\
= & (\neg p \vee \neg q) \wedge(p \vee q) \\
= & (\quad(\neg p \wedge q) \vee(p \wedge \neg q)
\end{array}\right)
$$

2-state X1N maps to $\neg(p \wedge q)$ which is resolved to a 2-state OR $(\neg p \vee \neg q)$. There are various ways to reduce a 2 -state X 1 N to a 2 -state X 1 :

$$
\left.\begin{array}{rl}
& \mathrm{X} 1 \mathrm{~N}(p, q) \\
= & (\quad(\neg p \wedge \neg q) \vee(\neg p \wedge q) \vee(p \wedge \neg q) \\
= & (\neg p \vee(p \wedge \neg q) \\
= & (\neg q \vee(q \wedge \neg p) \\
= & (\neg p \vee \neg q
\end{array}\right)
$$

2 -state cells limit the maximum multi-value representation to 2 values, which is the same as the number of states already used. This is already obvious from the mapping of 2 -state X 1 N to 2 -state X1.

So there is no room for amibiguity in 2-SAT problems, hence there is no hardness.
Since graph theory is the domain of X1 (independent set) and X1N (edge cover), the existence of polynomial time algorithms for 2 -SAT problems are simply a deductible necessity.
Table 5 shows, that there is no such tight relation between 3 -state XOR, X1, X1N. Only 3 -state OR still maps nicely to a 3 -state X 1 as a disjunction of conjunctions.

p	q	r	XOR	X 1	X 1 N	AND	OR
0	0	0	0	0	1	0	0
0	0	1	1	1	1	0	1
0	1	0	1	1	1	0	1
0	1	1	0	0	0	0	1
1	0	0	1	1	1	0	1
1	0	1	0	0	0	0	1
1	1	0	0	0	0	0	1
1	1	1	1	0	0	1	1

Table 5: 3-state truth tables XOR, X1, X1N

Although XOR represention is inherently exponential (3-state XOR $\mapsto 4$-state $\mathrm{X} 1,5$-state $\mathrm{XOR} \mapsto$ 8 -state $\mathrm{X} 1,7$-state $\mathrm{XOR} \mapsto 16$-state $\mathrm{X} 1, \ldots$), it can be broken down into 3 -state parts due to the symmetric properties of XOR, which makes XOR detection and XOR loop detection quite simple in the X 1 satoku matrix.

A k-state $\mathrm{X} 1 \mathrm{~N}, k \geq 3$, can only be represented by a $(k+1)$-state X 1 , which is enough to make detection of missing "at-least-one" constraints for multi-value problems as hard as solving the problem itself for a x-state, $x \geq 4$, multi-value problem.

20.1 Hardness and Complexity

n-complexity is simply useless, as there is no single exclusive set of variables to represent a propositional problem.
m-complexity for 2 -state reduction is the worst case upper bound for a decision algorithm.
m-complexity over CNF-clauses alone does not account for redundant clauses or loops, and therefore cannot be an accurate measure of hardness.
E.g., hgen2-v450-s41511877.shuffled-as.sat03-1682.used-as.sat04-816.cnf:

There are 544 -state cells. Worst case 2 -state reduction m-complexity is therefore $O\left(2^{54}\right)$. Since contradictions are detected earlier - just like with the XORSAT example - the depth of 37 is expected and can be verified in a satoku matrix by 2-state reduction (depth 24).
While XORSAT loops are prominently visible and do not have redundant constraints, they seem quite hard. But with Gauss-Jordan elimination as loop detection tool, they are managable.

However, multi-value problems do not have such nice properties. As shown, the entire set of "at-least-one" constraints can be left out and must be (re-) proved from the ambiguous "at-most-one" constraints. Since that is a problem of equivalent complexity as proving the incomplete source problem, there is not much that can be done about it.

21. The Laws of Logic

When the laws of logic are interpreted from the perspective of structural logic, it is important to understand, that provability does not necessarily mean, that anything must be actually decided. So, while the satoku matrix is still undecided not all the laws of logic are satisfied, which is a little bit reminiscent of dialethism and constructive logic. However in a decided satoku matrix all the laws of logic hold.

The mapping of 2 propositional variables p, q as $(p \vee \neg p) \wedge(q \vee \neg q)$ with the conflict relationship $(\neg p \vee \neg q)$ into 2-state cells results in a satoku matrix as shown in figure 69.

Figure 69: $\neg p$ or $\neg q$

The variable state $p=\mathrm{T}$ is represented by atomic state $s_{0_{0_{0}}}$, The variable state $p=\mathrm{F}$ is represented by atomic state $s_{0_{0_{1}}}$.

- The law of excluded middle (LEM): "either A or ~A", holds since a third state would make the represented states impossible which would cause a contradiction.
- Law of identity (LI): "A is A, and A is not ~A", holds since both states are represented and mutually exclusive. Each state has its own row and column and there exists no transformation, that exchanges only parts of these columns ${ }^{5}$.
- Law of non-contradiction (LNC): "not (both A and ~A)", holds as soon as the cell representing the variable states is decided. However, as long as the cell is not decided, both states are still possible. The same holds for the conflict relationship row $r_{1_{1_{0}}}$, which only signifies that both states are possible. However, when $r_{1_{10}}$ becomes decided, only one of the states can be required.

22. Summary

While structural logic will not become a contender in the next SAT race and outright cannot be handled by a human without the aid of a computer, it can certainly provide theoretical insight into the structure of propositional problems.

Structural logic can also be used for real applications, e.g., to construct more desirable encodings for SAT-solvers.

To test the hypotheses of structural logic, the author conducted an experiment, by repeatedly reencoding a sudoku matrix in direct encoding, each time adding the new redundant variables

[^3]and therefore convoluting the problem without actually making it harder. The findings were, that SAT-solvers (miniSAT, CryptoMiniSat, march_rw, walksat, Lingeling) spend increasingly more time checking these insignificant variables that cannot be easily identified as such in a one-dimensional environment.

In the context of structural logic, such 2-state constructs are simply ignored, since they are irrelevant for determining provability.

In other experiments, a significant decrease in decisions was found, when the problem was transformed with conflict maximization and re-encoded in direct encoding.

Satoku Matrix

List of Work Marks

TBD (1) - reference to graph isomorphism 2
TBD (2) - Derive conflict subsets/supersets from cell rows 24
TBD (3) - distractor subsequence is part of an immediate indirect conflict 24
TBD (4) - derive advance decisions from distractors 25
TBD (5) - Identifying Relevant Problem 78
TBD (6) - Multi-value Logic Loops strategiy 79
WM (7) - see 00-experimental/k-independent-set/ 101

List of Tables

1 Index scheme 8
2 State table for merging two states $s_{i_{j_{g_{h}}}}, s_{e_{f_{g_{h}}}}$ 9
3 Summary of properties 19
4 2-state truth tables XOR, X1, X1N 86
5 3-state truth tables XOR, X1, X1N 87
6 CDCL Solver decisions 101

List of Figures

1 Logic conversions 5
2 Basic satoku matrix and extent of indexing 7
3 Atomic cells $c_{i_{i}}$ with mutually exclusive atomic states $s_{i_{j_{j}}}, i=(0,1), j=$ 11
($0,1,2$)
4 CFR cells $c_{0_{1}}, c_{1_{0}}$ with impossible CFR states $s_{0_{2_{2}}}, s_{1_{2_{0_{2}}}}$ for mutually ex- 11
clusive atomic states $s_{0_{2_{0}}}$ and $s_{1_{2_{1_{2}}}}$
5 Visually enhanced satoku matrix 14
6 conflict propagation 16
7 conflict propagation continued 17
8 Original example satoku matrix consolidated 18
10 satoku matrix for plain 3-variable "AND" 21
11 satoku matrix for 3 -variable "AND" with maximized conflicts 22
12 Examples for basic conflict subsequences 23
13 3-variable XOR 24
14 Advance decision stage 1 26
15 Advance decision stage 2 26
16 Advance Decision stage 3 27
17 satoku matrix for 3 -variable "XOR" with maximized conflicts 28
18 Redundancies removed from satoku matrix for 3-variable "XOR" 29
19 Merge cells $c_{0_{0}}, c_{1_{1}}$ for 3 -variable "XOR", require states from $c_{0_{0}}$ 30
20 Merge cells $c_{0_{0}}, c_{1_{1}}$ for 3 -variable "XOR", require states from $c_{1_{1}}$ 30
21 Merge cells $c_{0_{0}}, c_{1_{1}}$ for 3 -variable "XOR", add states from $c_{1_{1}}$ 31
22 Construct complementary cell row $r_{1_{0_{2}}}$ for bound cell row $r_{0_{1_{2}}}$ 34
23 Immediate indirect conflict 34
24 Hidden indirect conflict stage 1 35
25 Hidden indirect conflict stage 2 35
26 Indirect conflict in unconsolidated 2-state satoku matrix 36
$27 \quad$ 2-State splitting stage 1 38
28 2-State splitting stage 2 39
29 Distractor reduction stage 1 40
30 Distractor reduction stage 2 41
31 distractor $s_{8_{2}}$ for $s_{8_{0}}$ or $s_{8_{1}}$ 42

Structural Single State Mutinex Logic

32 removal of $\operatorname{Dst}\left(s_{8_{2}}, s 8_{0}\right)$ reveals more distractors 43
33 still more distractors after distractor removal 44
34 satoku matrix \mathbb{S} strictly provable 44
35 reduced to 2 -state cells 45
36 2-state distractor with impossible state 45
37 Pure literal elimination 46
423 XOR Gauss example - mapped from CDF 49
433 XOR Gauss example - results $=0$ 50
443 XOR Gauss example - condensed 50
453 XOR Gauss example - reformulated 52
46 3-state cell satoku matrix for bipartite problem (excerpt) 53
47 4-state cell satoku matrix for bipartite problem (excerpt) 54
48 XOR problem for equivalence reasoning 55
49 Equivalence reasoning, first 2-state split 56
50 Equivalence reasoning, alternate 2-state split transformed 57
51 Propositional XOR and graph theoretic choice 58
52 XOR/choice: Preliminary XOR variables 59
53 XOR/choice: single choice variables (at-most-one) 60
54 XOR/choice 61
55 XOR/choice 62
56 XOR/choice 63
57 XOR/choice 64
58 XOR/choice 65
59 XOR/choice 67
60 XOR/choice 68
61 XOR/choice 69
62 Sudoku block in direct encoding, implicit constraints omitted 71
63 Sudoku block in direct encoding, too many impossible states removed 72
64 Sudoku block in direct encoding, contradiction detected 72
65 Sudoku block, strict 2-state reduction 73
66 Sudoku block in enhanced encoding (excerpt) 74
67 Sudoku block in enhanced encoding, 1 step before hidden pair detection in $c_{2_{2}}, c_{3_{3}}$ 75
68 Sudoku block in enhanced encoding, hidden pair detected in $c_{2_{2}}, c_{3_{3}}$ 76
$69 \quad \neg p$ or $\neg q$ 89
70 satoku matrix for 3-variable "AND" from direct encoding (unconsolidated) 99
71 satoku matrix for 3-variable "AND" from direct encoding (consolidated) 100
72 satoku matrix for plain CNF problem with maximized conflicts 103
73 Variable assignment in fully reduced provable satoku matrix 105
74 Variable assignment in provable satoku matrix derived from subset requirement 106
75 Variable assignment in provable satoku matrix derived from distractor elimination 107
762 clause, 10 variable satoku matrix 108
77 conflict-superset-000 109
78 conflict-superset-direct 109
79 conflict-superset-indirect 110
80 True subset $s_{0_{1}}$ required, superset $s_{1_{1}}$ impossible 110
81 2-variable contradiction - pre-decision - stage 1 112
82 2-variable contradiction - pre-decision - stage 2 113
83 2-variable contradiction polynomially expanded to 3 -SAT - stage 1 115
84 2-variable contradiction polynomially expanded to 3 -SAT - stage 2 116
85 2-variable contradiction polynomially expanded to 3 -SAT - stage 3 117

List of Theorems

Theorem 1. (consolidated 2-State satoku matrix is impossible or provable)

Satoku Matrix

List of Equations

Equation (1) (state pos imp) 8
Equation (2) (state ind mutex) 8
Equation (3) (state ind mutex commutativity) 8
Equation (4) (state ind mutex pos imp) 8
Equation (5) (state ind mutex pos imp mirror) 8
Equation (6) (macro pos imp) 9
Equation (7) (macro dec und) 9
Equation (8) (macro bnd) 9
Equation (9) (macro rst unr) 9
Equation (10) (comp pos imp) 10
Equation (11) (comp dec und) 10
Equation (12) (comp bnd) 10
Equation (13) (comp rst unr) 10
Equation (14) (cell atom mutex) 10
Equation (15) (cell cfr) 11
Equation (16) (cell row atom) 11
Equation (17) (cell row cfr) 11
Equation (18) (cell row bnd) 12
Equation (19) (cell row req) 12
Equation (20) (cell row cfl) 12
Equation (21) (cell row cmb) 12
Equation (22) (comp cell pos imp) 12
Equation (23) (comp cell dec und) 12
Equation (24) (comp cell rst unr) 12
Equation (25) (comp cell ctr) 12
Equation (26) (state row) 13
Equation (27) (state row cfl) 13
Equation (28) (state row cmb) 13
Equation (29) (state row ctr) 13
Equation (30) (provability basic) 14
Equation (31) (provability one state per cell) 14
Equation (32) (cnf) 20
Equation (33) (empty clause) 20
Equation (34) (cdf) 20
Equation (35) (example problem minimal) 21
Equation (36) (example problem maximized) 21
Equation (37) (basic conflict subsequence) 23
Equation (38) (relative conflict complement) 23
Equation (39) (true conflict subsequence) 23
Equation (40) (conflict sequence equality) 23
Equation (41) (mutually exclusive conflict sequences) 23
Equation (42) (identity cell rows) 24
Equation (43) (bound state is mininmal subset) 24
Equation (44) (popcount functions) 24
Equation (45) (cnf-3-sat) 101
Equation (46) (no-cfl-2-clause-no-var) 103
Equation (47) (no-cfl-2-clause-simple-var) 103
Equation (48) (no-cfl-2-clause-max-var) 104
Equation (49) (no-cfl-2-clause-10-var) 107
Equation (50) (max-2-splits) 108

List of Algorithms

Algorithm 1. contradiction check of cell $c_{i_{g}}$ (cell-contra-check) 15
Algorithm 2. set atomic state $s_{i_{j_{j}}}$ impossible and propagate (atomic-state-imp) 16
Algorithm 3. check for impossible cell row $r_{i_{j_{g}}}$ and propagate (cell-row-imp) 16
Algorithm 4. requirement update of state row $s_{i_{j}}$ (requirement-update) 18
Algorithm 5. map CDF problem to satoku matrix (map-cdf-to-sm) 20
Algorithm 6. merge for satoku matrix reduction (merge-reduction) 32
Algorithm 7. detect immediate indirect conflicts (immediate-indirect-conflicts) 34
Algorithm 8. minimal mapping of satoku matrix to CNF (map-sm-to-cnf-min) 97
Algorithm 9. map 3-SAT problem to graph for k-independent set (map-3-sat-to-graph-k-ind-set) 101

References

[MOUNT] David M. Mount, CMSC 451 Lecture Notes, Fall 2012, pp. 92, http://www. cs. umd. edu/class/fall2012/cmsc451/Lects/cmsc451-lects.pdf, accessed 2015-01-28.
[BROWN] Brown, Frank Markham, Boolean Reasoning: The Logic of Boolean Equations, Kluwer Academic Publishers, Boston, 1990. Second edition, Dover Publications, Mineola, 2003. http://zbmath.org/?q=an:1029.03001\&format=complete, accessed 2015-01-28.
[JARV] Matti Järvisalo, Further investigations into regular XORSAT, Proceedings of the Twenty-First National Conference on Artificial Intelligence (AAAI-06), pages 18731874, AAAI Press, 2006, http://www.cs.helsinki.fi/u/mjarvisa/benchmarks/, accessed 2015-01-28
[RINTANEN] Rintanen, Jussi, Planning as Satisfiability: state of the art.
http://users.ics.aalto.fi/rintanen/jussi/satplan.html, accessed 2015-0206.
[HERTEL] Hertel, Alexander and Hertel, Philipp and Urquhart, Alasdair, Formalizing Dangerous SAT Encodings, Theory and Applications of Satisfiability Testing - SAT 2007, Vol 4501, Lecture Notes in Computer Science, pages 159-172, Springer Berlin Heidelberg, 2007, http://dx.doi.org/10.1007/978-3-540-72788-0_18.
[SIMONIS] Simonis Helmut, Sudoku as a Constraint Problem, CP Workshop on Modeling and Reformulating Constraint Satisfaction Problems, 2005, pages 13-28.
[SUDOSAT] I. Lynce, J. Ouaknine, Sudoku as a SAT problem, in 9th International Symposium on Artificial Intelligence and Mathematics AIMATH'06, January 2006.
[LIN] Lin, Hung-Hsuan \& Wu, I-Chen. (2010). Solving the Minimum Sudoku Poblem. Proceedings - International Conference on Technologies and Applications of Artificial Intelligence, TAAI 2010. 10.1109/TAAI.2010.77.
[ROYLE17] Royle, G.: Minimum Sudoku, http://www.csse.uwa.edu.au/ gordon/sudokumin.php (2005)
[STERT] Stertenbrink, G., Meyrignac, J.C.: 100 Sudoku problems. http://magictour.free.fr/top100 (2005)
[KNUTH] Knuth, Donald E., The Art of Computer Programming, Volume 4, Fascicle 6: Satisfiability, Addison-Wesley Professional, 2015, ISBN: 0134397606, 9780134397603
[MALAGUTI] Malaguti E., Monaci M., Toth P., An exact approach for the Vertex Coloring Problem, Discrete Optimization, 8 (2), pp. 174-190, 2011.
[sep-para] Priest, Graham, Tanaka, Koji and Weber, Zach, "Paraconsistent Logic", The Stanford Encyclopedia of Philosophy (Fall 2013 Edition), Edward N. Zalta (ed.), http: //plato.stanford.edu/archives/fall2013/entries/logic-paraconsistent/, accessed 2015-01-28.
[sep-dia] Priest, Graham and Berto, Francesco, "Dialetheism", The Stanford Encyclopedia of Philosophy (Summer 2013 Edition), Edward N. Zalta (ed.), http://plato. stanford.edu/archives/sum2013/entries/dialetheism/, accessed 2015-01-28.
[sep-proof] von Plato, Jan, The Development of Proof Theory, The Stanford Encyclopedia of Philosophy (Summer 2013 Edition), http://plato.stanford.edu/archives/sum2013/ entries/proof-theory-development/, accessed 2015-01-28.
[Ignatiev 2017] Ignatiev, A., Morgado, A., \& Marques-Silva, J. (2017). Cardinality encodings for graph optimization problems. In C. Sierra (Ed.), Proceedings of the 26th International Joint Conference on Artificial Intelligence (pp. 652-658). Association for the Advancement of Artificial Intelligence (AAAI). https://doi.org/10.24963/ijcai.2017/91
[wiki-sdt] Wikipedia contributors. (2015, February 11). Schaefer's dichotomy theorem. In Wikipedia, The Free Encyclopedia. Retrieved February 11, 2015, from https: //en. wikipedia.org/w/index.php?title=Schaefer\'s_dichotomy_theorem\& oldid=643057155.
[wiki-logic] Wikipedia contributors. (2015, January 14). Logic. In Wikipedia, The Free Encyclopedia. Retrieved January 28, 2015, from https://en.wikipedia.org/w/index.php? title=Logic\&oldid=642450325.
[wiki-ml] Wikipedia contributors. (2015, January 7). Mathematical logic. In Wikipedia, The Free Encyclopedia. Retrieved January 28, 2015, from https://en.wikipedia.org/ w/index.php?title=Mathematical_logic\&oldid=641497313.
[wiki-graph] Wikipedia contributors. (2015, January 7). Graph theory. In Wikipedia, The Free Encyclopedia. Retrieved January 28, 2015, from https://en.wikipedia.org/w/ index.php?title=Graph_theory\&oldid=641496555.
[wiki-clique] Wikipedia contributors. (2020, April 13). Clique (graph theory). In Wikipedia, The Free Encyclopedia. Retrieved 18:03, August 19, 2020, from https://en.wikipedia. org/w/index.php?title=Clique_(graph_theory) \&oldid=950692676.
[wiki-prop] Wikipedia contributors. (2015, January 13). Propositional calculus. In Wikipedia, The Free Encyclopedia. Retrieved January 28, 2015, from https://en.wikipedia.org/ w/index.php?title=Propositional_calculus\&oldid=642295906.
[wiki-seq] Wikipedia contributors. (2014, November 4). Sequent calculus. In Wikipedia, The Free Encyclopedia. Retrieved January 28, 2015, from https://en.wikipedia.org/ w/index.php?title=Sequent_calculus\&oldid=632462097.
[wiki-mvl] Wikipedia contributors. (2014, December 26). Many-valued logic. In Wikipedia, The Free Encyclopedia. Retrieved January 28, 2015, from https://en.wikipedia.org/ w/index.php?title=Many-valued_logic\&oldid=639735721.
[wiki-cl] Wikipedia contributors. (2015, January 16). Intuitionistic logic. In Wikipedia, The Free Encyclopedia. Retrieved January 28, 2015, from https://en.wikipedia.org/ w/index.php?title=Intuitionistic_logic\&oldid=642823158.
[wiki-am] Wikipedia contributors. (2015, January 13). Adjacency matrix. In Wikipedia, The Free Encyclopedia. Retrieved January 28, 2015, from https://en.wikipedia.org/ w/index.php?title=Adjacency_matrix\&oldid=642347598.
[wiki-fc] Wikipedia contributors. (2019, September 30). Functional completeness. In Wikipedia, The Free Encyclopedia. Retrieved March 21, 2020, from https: //en.wikipedia.org/w/index. php?title=Functional_completeness\&oldid= 918733357
[wiki-dpll] Wikipedia contributors. (2020, August 28). DPLL algorithm. In Wikipedia, The Free Encyclopedia. Retrieved 2020-09-02, from https://en.wikipedia.org/w/index. php?title=DPLL_algorithm\&oldid=975348912.
[wiki-hammwt] Wikipedia contributors. (2020, August 7). Hamming weight. In Wikipedia, The Free Encyclopedia. Retrieved 2020-09-04, from https://en.wikipedia.org/w/index. php?title=Hamming_weight\&oldid=971669481.
[SCHPDE] Wolfgang Scherer, Generalization of CNF and Consequences for DNF of Implicants under Distributive Expansion.
http://sw-amt.ws/satoku/doc/doc-cnf-cdf-pde/satoku-cnf-cdf-pde.pdf, accessed 2015-02-01.
[SCH2SAT] Wolfgang Scherer, 2-SAT Algorithm For Complete Set of Solutions. http://sw-amt.ws/jsat/2-SAT-satoku-matrix.pdf, accessed 2015-02-01.
[SCHSUD] Wolfgang Scherer, World's Hardest Sudoku.
http://sw-amt.ws/sudoku/worlds-hardest-sudoku/, accessed 2015-02-01.
[SCHCDCL] Wolfgang Scherer, CDCL and Direct Encoding. http://sw-amt.ws/satoku/doc/doc-experiments/README.html, accessed 2017-0512.

Appendix A. Mapping a Satoku Matrix to CNF

Here is a minimal algorithm for mapping a satoku matrix to a propositional formula (CNF).

- Each atomic state of a state row $s_{i_{j}}$ is mapped to a propositional variable.
- Each cell c_{i} is mapped to a propositional clause, with unnegated propositional variables of the corresponding state rows $s_{i_{j}}$ as alternatives.
- Each impossible inter-cell conflict relationship $s_{i_{j_{g_{h}}}}, \operatorname{Imp}\left(s_{i_{j_{g_{h}}}}\right)$, for a state row $s_{i_{j}}$ is mapped as implication $s_{i_{j}} \rightarrow \neg s_{g_{h}}$, transformed to a disjunction $\neg s_{i_{j}} \vee \neg s_{g_{h}}$.

Note: It is obvious that once an inter-cell CFR $s_{i_{j_{g_{h}}}}$ is mapped to $\neg s_{i_{j}} \vee \neg s_{g_{h}}$, mapping the mirror CFR $s_{g_{h_{i_{j}}}}$ to $s_{g_{h}} \rightarrow \neg s_{i_{j}}$, transformed to $\neg s_{g_{h}} \vee \neg s_{i_{j}}$ is redundant.
Note: If it is not obvious, that mapping the intra-cell conflict relationships can be omitted, consider the difference between one or more propositional variables becoming true and selecting exactly one alternative from a clause.

```
Algorithm 8 (minimal mapping of satoku matrix to CNF).
start formula
for each cell \(c_{i_{i}}\) :
    start disjunction
    for each cell row \(r_{i_{j_{i}}}\) :
        add variable \(p_{i_{j}}\) to disjunction
    add disjunction to formula
for each state row \(s_{i_{j}}\) :
    for each cell row \(r_{i_{j g}}\) in state row \(s_{i_{j}}, g>i\) :
        for each singular state \(s_{i_{j_{h}}}\) in cell row \(r_{i_{j_{g}}}\) :
            if \(\operatorname{Imp}\left(s_{i_{j_{g_{h}}}}\right)\) :
                    add disjunction \(\left(\neg p_{i_{j}} \vee \neg p_{g_{h}}\right)\) to formula
```

The result of this algorithm is strictly CNF, albeit in most cases with an entirely different set of variables than the original CNF problem.

Applying algorithm 8 to the satoku matrix in figure 10, results in the following propositional formula:

Figure 70 shows an excerpt of the unconsolidated satoku matrix derived from that formula. This is a very destructurized version of a 3 -variable "AND".

P	---	---														
$\begin{aligned} & s_{0_{0}} \\ & s_{0_{1}} \\ & s_{0_{2}} \end{aligned}$	$\begin{array}{lll} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$						$\begin{aligned} & --- \\ & --- \\ & -\quad \end{aligned}$	$--$		\|-	$0-$	$\begin{aligned} & \hline 0- \\ & -- \end{aligned}$	$0-$	$\overline{0-}$	-	$0 \text { - }$
$\begin{aligned} & s_{1_{0}} \\ & s_{11} \\ & s_{1_{2}} \\ & \hline \end{aligned}$		$\begin{array}{llll} 1 & \circ & \circ \\ 0 & 1 & \circ \\ \circ & \circ & 1 \end{array}$					$\begin{aligned} & --- \\ & --- \\ & --- \end{aligned}$	$-$	-							$--$
$\begin{aligned} & s_{2_{0}} \\ & s_{2_{1}} \\ & s_{22} \\ & \hline \end{aligned}$		$\begin{aligned} & --- \\ & --- \\ & --- \end{aligned}$	$\begin{array}{llll} 1 & \circ & \circ \\ 0 & 1 & \circ \\ \circ & \circ & 1 \end{array}$					$-$								
$\begin{aligned} & s_{3_{0}} \\ & s_{3_{1}} \\ & s_{3_{2}} \\ & \hline \end{aligned}$				$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	--- --- ---			$-$	$\left\|\begin{array}{l} -- \\ -- \\ -- \end{array}\right\|$	$\begin{aligned} & -- \\ & -- \\ & -- \end{aligned}$	0					
$\begin{aligned} & s_{4_{0}} \\ & s_{4_{1}} \\ & s_{4_{2}} \\ & \hline \end{aligned}$					$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	--- --- ---	$\left\lvert\, \begin{aligned} & --- \\ & --- \\ & --- \end{aligned}\right.$	$\begin{aligned} & -- \\ & -- \\ & -- \end{aligned}$	$\left\|\begin{array}{l} -- \\ -- \\ -- \end{array}\right\|$	$\begin{aligned} & -- \\ & -- \\ & -- \end{aligned}$	$\left\|\begin{array}{l} -- \\ -- \\ -- \end{array}\right\|$	0		$\left\lvert\, \begin{aligned} & -- \\ & -- \\ & -- \end{aligned}\right.$		
$\begin{aligned} & s_{5_{0}} \\ & s_{5_{1}} \\ & s_{5_{2}} \\ & \hline \end{aligned}$		$\begin{aligned} & --- \\ & --- \\ & --- \end{aligned}$		--- ----		$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	--- --- ---	-- -- --	$\left\|\begin{array}{l} -- \\ -- \\ -- \end{array}\right\|$	$\begin{aligned} & -- \\ & -- \\ & -- \end{aligned}$	$\left\lvert\, \begin{aligned} & -- \\ & -- \\ & -- \end{aligned}\right.$		0			
$\begin{aligned} & s_{6_{0}} \\ & s_{6_{1}} \\ & s_{6_{2}} \\ & \hline \end{aligned}$							$\begin{array}{lll} 1 & 0 & 0 \\ \circ & 1 & \circ \\ \circ & 0 & 1 \end{array}$	-	$\left\lvert\, \begin{aligned} & -- \\ & -- \end{aligned}\right.$	$\begin{aligned} & -- \\ & -- \end{aligned}$				0		
$\begin{aligned} & s_{7_{0}} \\ & s_{7_{1}} \\ & \hline \end{aligned}$								$\circ 1$								
$\begin{aligned} & s_{8_{0}} \\ & s_{8_{1}} \\ & \hline \end{aligned}$								-	$\begin{array}{ll} \hline 10 \\ \circ & 1 \end{array}$	--	---					
$\begin{gathered} s_{9_{0}} \\ s_{9_{1}} \\ \hline \end{gathered}$										$\left\|\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}\right\|$	$-$					
$\begin{aligned} & s_{10} 0_{0} \\ & s_{10_{1}} \\ & \hline \end{aligned}$	0			0--				--	--		$\begin{array}{lll} \hline 1 & \circ \\ \circ & 1 \end{array}$			---		
$\begin{aligned} & s_{11_{0}} \\ & s_{11_{1}} \\ & \hline \end{aligned}$									$\left\|\begin{array}{l} -- \\ -- \end{array}\right\|$		$-$	$\begin{array}{lll} \hline 1 & \circ \\ \circ & 1 \end{array}$	$\left\lvert\, \begin{aligned} & -- \\ & -- \end{aligned}\right.$			
$\begin{aligned} & s_{12_{0}} \\ & s_{12_{1}} \\ & \hline \end{aligned}$				---	---	$\overline{0}=-$	----	---	---		---		$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	---		--
$\begin{aligned} & s_{13_{0}} \\ & s_{13_{1}} \\ & \hline \end{aligned}$	0						$0--$	$-$	---	$\begin{aligned} & --- \\ & -- \end{aligned}$	---	---	$\left\lvert\, \begin{aligned} & -- \\ & -- \end{aligned}\right.$	$\begin{aligned} & 1 \circ \\ & \circ \\ & \circ \end{aligned}$	--	
$\begin{aligned} & s_{14_{0}} \\ & s_{14_{1}} \\ & \hline \end{aligned}$	0			----	----	----	----	$\overline{0}-$	$\left\lvert\, \begin{aligned} & -- \\ & -- \end{aligned}\right.$	$\begin{aligned} & -- \\ & -- \end{aligned}$	$\left\lvert\, \begin{aligned} & -- \\ & -- \end{aligned}\right.$	$\left\|\begin{array}{l} -- \\ -- \end{array}\right\|$	---		$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	
$\begin{aligned} & s_{15_{0}} \\ & s_{15_{1}} \\ & \hline \end{aligned}$	-0-	$\left\lvert\, \begin{aligned} & --- \\ & -0- \end{aligned}\right.$	--	---	--	---	---	---	--	--	--	--	--	-	---	$\begin{array}{ll}1 & \circ \\ \circ & 1\end{array}$

Figure 70: satoku matrix for 3-variable "AND" from direct encoding (unconsolidated)

Figure 71 shows an excerpt of the consolidated satoku matrix derived from the direct encoding formula. The consolidation algorithm has restored the core problem including the representation of the original variables, exactly as shown in figure 10.

P	---	---	---	---	-	---	-	--	--		--		--			--
$\begin{aligned} & s_{0_{0}} \\ & s_{0_{1}} \\ & s_{0_{2}} \\ & \hline \end{aligned}$	$\begin{array}{llll} \hline & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{\|l\|} \hline--- \\ -0- \\ --0 \end{array}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{aligned} & 0-- \\ & --- \\ & --0 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0-- \\ & --- \\ & --- \end{aligned}\right.$	$\left\|\begin{array}{l} 0-- \\ -0- \\ --0 \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 0-- \\ & -0- \\ & --- \end{aligned}\right.$	01	$\begin{gathered} -- \\ 01 \\ -- \end{gathered}$	$\left\|\begin{array}{l} --- \\ -- \\ 10 \end{array}\right\|$	$\begin{array}{l\|} \hline 01 \\ -- \end{array}$	$\begin{aligned} & 01 \\ & -1 \end{aligned}$	$\begin{aligned} & 01 \\ & -\quad \end{aligned}$	$\begin{aligned} & 01 \\ & -1 \end{aligned}$	$\begin{array}{l\|} \hline 01 \\ -- \end{array}$	- 0
$\begin{aligned} & s_{1_{0}} \\ & s_{1_{1}} \\ & s_{1_{2}} \end{aligned}$	$\begin{aligned} & --- \\ & -0- \\ & --0 \end{aligned}$	$\begin{array}{lll} 1 & \circ & 0 \\ \circ & 1 & 0 \\ \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}\right.$	$\begin{aligned} & 0-- \\ & -0- \\ & -1 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}\right.$	$\begin{aligned} & 0-- \\ & --- \\ & --- \end{aligned}$	$\begin{aligned} & 0-- \\ & --- \\ & --0 \end{aligned}$	$\begin{aligned} & 01 \\ & -- \end{aligned}$	$\left\lvert\, \begin{gathered}-- \\ 10 \\ --\end{gathered}\right.$	$\begin{aligned} & -- \\ & -- \\ & 01 \end{aligned}$	$-$	-	$-$	$\begin{aligned} & -- \\ & -- \\ & -- \end{aligned}$	$-$	$\begin{aligned} & -- \\ & 10 \end{aligned}$
$\begin{aligned} & s_{2_{0}} \\ & s_{2} \\ & s_{2_{2}} \\ & \hline \end{aligned}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\left\lvert\, \begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}\right.$	$\begin{array}{llll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left\|\begin{array}{l} 0-- \\ -0- \\ --0 \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 0-- \\ & -0- \\ & --- \end{aligned}\right.$	$\left\lvert\, \begin{array}{l\|} \hline 0-- \\ --- \\ --0 \end{array}\right.$	$\left\|\begin{array}{c} 0-- \\ --- \end{array}\right\|$	01	- 10	$\left\lvert\, \begin{gathered} -- \\ -- \\ 1 \end{gathered} 0\right.$	--	--	-	-	$\begin{aligned} & -- \\ & -- \\ & -- \end{aligned}$	-
$\begin{aligned} & s_{3}{ }_{3} \\ & s_{3} \\ & s_{3} \\ & \hline \end{aligned}$	$\begin{aligned} & 0-- \\ & --- \\ & --0 \end{aligned}$	$\left\lvert\, \begin{gathered}0-- \\ -0-\end{gathered}\right.$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$\begin{array}{llll} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}$	$\left\lvert\, \begin{aligned} & --- \\ & -0- \\ & --- \end{aligned}\right.$	$\begin{array}{\|l\|} \hline--- \\ -0 \\ --0 \\ \hline \end{array}$	10	$\left\lvert\, \begin{aligned} & -- \\ & 0 \\ & -1 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & -- \\ & -- \\ & 01 \end{aligned}\right.$	$\begin{aligned} & \hline 10 \\ & -- \\ & \hline \end{aligned}$	--	\|-	\|--	$\begin{aligned} & \hline 10 \\ & -\quad \end{aligned}$	$-$
$\begin{aligned} & s_{4_{0}} \\ & s_{4_{1}} \\ & s_{4_{2}} \\ & \hline \end{aligned}$	0--	$\left\lvert\, \begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}\right.$	$\begin{gathered} 0-- \\ -0- \end{gathered}$	$\begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}$	$\begin{array}{llll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left(\begin{array}{l} --- \\ -0- \\ -0 \end{array}\right.$	---	10	--- - -	$\left\|\begin{array}{c} -- \\ -- \\ 1 \end{array}\right\|$	$--$	10	\|--	--	10	
$\begin{aligned} & s_{5_{0}} \\ & s_{5_{1}} \\ & s_{5_{2}} \\ & \hline \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \\ & --0 \end{aligned}$	$0--$	$\begin{aligned} & 0-- \\ & --- \\ & --0 \end{aligned}$	--- $-0-$ ---	$\begin{aligned} & --- \\ & -0- \\ & --0 \end{aligned}$	$\begin{array}{llll} 1 & \circ & \circ \\ 0 & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left\|\begin{array}{l} --- \\ --- \\ --0 \end{array}\right\|$	$\begin{aligned} & 10 \\ & -- \\ & \hline \end{aligned}$	--	$\left\lvert\, \begin{aligned} & -- \\ & -- \\ & 0 \end{aligned}\right.$	$-$	$\left\|\begin{array}{l} -- \\ -- \\ -- \end{array}\right\|$	10		10	
$\begin{aligned} & s_{6_{0}} \\ & s_{6_{1}} \\ & s_{6_{2}} \\ & \hline \end{aligned}$	$0--$ $-0-$	$\begin{array}{\|l\|} \hline 0-- \\ --- \\ --0 \end{array}$	0	$\begin{aligned} & --- \\ & -0- \\ & -0 \end{aligned}$	---	$\left\lvert\, \begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}\right.$	$\begin{array}{\|lll\|} \hline 1 & \circ & \circ \\ 0 & 1 & 0 \\ \circ & \circ & 1 \end{array}$	10 -- --	--	$\left\|\begin{array}{c} -- \\ -- \\ 10 \end{array}\right\|$	-	-- -- --	-- -- --	$\begin{aligned} & 10 \\ & -2 \end{aligned}$	10	-
$\begin{aligned} & s_{7_{0}} \\ & s_{7_{1}} \\ & \hline \end{aligned}$	0	$0--$	0--	$\overline{---}$	$\overline{-\quad--}$	$\left\lvert\, \begin{aligned} & --- \\ & 0-- \\ & \hline \end{aligned}\right.$	$0--$	$\begin{array}{ll} \hline 1 \circ \\ \circ & 1 \end{array}$	--		-			---	10	
$\begin{aligned} & s_{8} \\ & s_{8} \\ & s_{1} \end{aligned}$		---	---	- 0 -	-0-	$\left\|\begin{array}{l} --- \\ -0- \end{array}\right\|$	$\left\lvert\, \begin{aligned} & --- \\ & -0- \end{aligned}\right.$	--	$\begin{array}{lll} 1 & \circ \\ \circ & 1 \end{array}$	--	--	-		---	---	---
$\begin{array}{r} s_{9_{0}} \\ s_{9_{1}} \\ \hline \end{array}$	--- --0	--0	---	--0	---	--0	-0 ---0	-	--	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	--				-	--
$\begin{aligned} & s_{10_{0}} \\ & s_{10_{1}} \end{aligned}$	0 --	----		-	---		-	$-$	---	$--$	$\begin{aligned} & \hline 1 \circ \\ & \circ \end{aligned}$	--	-	---	---	--
$\begin{aligned} & s_{11_{0}} \\ & s_{11_{1}} \\ & \hline \end{aligned}$	$0--$	----		----	$\begin{aligned} & --- \\ & 0-- \end{aligned}$	----	----	--	---	---	--	$\begin{aligned} & 1 \circ \\ & \circ \\ & \circ \end{aligned}$	--	---	---	--
$\begin{aligned} & s_{12_{0}} \\ & s_{12_{1}} \\ & \hline \end{aligned}$	0 --	-	----	----	---	$\begin{aligned} & --- \\ & 0-- \end{aligned}$	----	--	---	--	--	--	$\begin{aligned} & 1 \circ \\ & \hline \circ \end{aligned}$	--	-	--
$\begin{aligned} & s_{13_{0}} \\ & s_{13_{1}} \\ & \hline \end{aligned}$	0 --	----	----	----	----	----	$\overline{---}$	--	--	---	---	-	--	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	--	--
$\begin{aligned} & s_{14_{0}} \\ & s_{14_{1}} \\ & \hline \end{aligned}$	0 --	---	---	$\begin{array}{\|c\|} \hline--- \\ 0--- \end{array}$	$\begin{aligned} & --- \\ & 0-- \end{aligned}$	$\left\lvert\, \begin{array}{\|l\|} \hline---- \\ 0--- \end{array}\right.$	$\begin{aligned} & --- \\ & 0-- \end{aligned}$	$\overline{--}$	--	--	--	--	-	\|--	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	--
$\begin{aligned} & s_{15_{0}} \\ & s_{15_{1}} \\ & \hline \end{aligned}$	-0--	---	---	---	---	---	---	--	--	--	--	--	---	--	--	$\begin{array}{ll} \hline 1 & \circ \\ \circ & 1 \end{array}$

Figure 71: satoku matrix for 3-variable "AND" from direct encoding (consolidated)

The effects of direct encoding on CDCL Solvers are illustrated in [SCHCDCL].
MiniSat v2.2.0 ${ }^{6}$. and Lingeling SAT Solver ${ }^{7}$. show consistently the same number of decisions for each type of encoding (see table 6).

[^4]| Encoding | CNF | direct unconsolidated | direct maximized |
| :--- | :--- | :--- | :--- |
| MiniSat | restarts : 1 | restarts : 1 | restarts : 1 |
| | conflicts : 0 | conflicts : 0 | conflicts : 0 |
| | decisions : 1 | decisions : 9 | decisions : 1 |
| | propagations : 3 | | |
| | conflict literals : 0 | propagations : 17 | |
| conflict literals : 0 | propagations : 19 | | |
| conflict literals : 0 | | | |
| Lingeling | c 0 decisions | c 8 decisions | c 0 decisions |
| | c 0 conflicts | c 2 propagations | c 31 propagations |

Table 6: CDCL Solver decisions

This example was chosen to show that even for trivially small problems, CDCL solvers can be forced to make more decisions than actually necessary to decide a problem. It should be evident, that this is an inherent feature of decision algorithms over variables that cannot be remedied. Conducting extensive experiments with "random" SAT instances is therefore pointless.
It is also no real solution to forbid "bad" encodings that eliminate the usefulness of pre-processing simplification stages.

Appendix B. Mapping a graph to a Satoku Matrix for k-independent set problem

see 00-experimental/k-independent-set/
Given a 3-SAT problem P (see also equation 32),

$$
\begin{equation*}
P=\bigwedge_{i=0}^{m} \bigvee_{i=0}^{k} l_{j}, \quad k=3, m \in \mathbb{N}_{0} \tag{45}
\end{equation*}
$$

mapped to a graph G with algorithm 9,

```
Algorithm 9 (map 3-SAT problem to graph for \(k\)-independent set).
for each clause \(C_{i}, i=(0, \ldots, m-1)\) :
    for each literal \(l_{j}, j=\left(0, \ldots,\left|C_{i}\right|-1\right)\) :
        add a vertex to \(G\)
for each clause \(C_{i}, \mathrm{i}=(0, \ldots, \mathrm{~m}-1)\) :
    for each literal \(l_{j}, j=\left(0, \ldots,\left|C_{i}\right|-2\right)\) :
        for each literal \(l_{h}, h=\left(j+1, \ldots,\left|C_{i}\right|-1\right)\) :
            add an edge between literal \(l_{j}\) and literal \(l_{h}\) to \(G\)
for each clause \(C_{i}, \mathrm{i}=(0, \ldots, \mathrm{~m}-2)\) :
    for each literal \(l_{j}, j=\left(0, \ldots,\left|C_{i}\right|-1\right)\) :
        for each clause \(C_{g}, \mathrm{~g}=(\mathrm{i}+1, \ldots, \mathrm{~m}-1)\) :
            for each literal \(l_{h}, h=\left(0, \ldots,\left|C_{g}\right|-1\right)\) :
                if \(l_{j} \wedge l_{h}=\mathrm{F}:\)
                    add an edge between literal \(l_{j}\) and literal \(l_{h}\) to \(G\)
```

the k-independent problem asks: does G have an independent set of size $k, k=m$.

Finding mapped clauses in graph $G=(V, E)$ is equivalent to partitioning G by repeatedly removing the maximal clique containing a specific vertex $u \in V$. Since finding a maximal clique containing a specific vertex u is equivalent to finding the maximal clique in subgraph $G^{\prime} \subseteq G$ containing the vertex u and all vertices $v_{i} \in V$ directly connected to $u,\left\{u, v_{i}\right\} \in E$, this problem is NP-hard [wiki-clique], see also Finding largest clique containing certain vertex - Stack Overflow.

However, in "Cardinality Encodings for Graph Optimization Problems" [Ignatiev 2017] a method is presented to construct a heuristic edge cover by cliques. This algorithm is claimed to perform the task in polynomial time.

Appendix C. Maximizing Conflicts

Traditionally, propositional formulae are reduced as much as possible. This makes perfect sense, if reasoning is conducted with pencil and paper ${ }^{8 .}$. Decision algorithms also follow that convention by eliminating as many clauses as possible.
However, the positive effect of an increased number of impossible conflict relationships in structural logic has an interesting effect, which seems counter-intuitive at first.
Using the tautology:

$$
(p \vee q \vee r)=((p) \vee(\neg p \wedge q) \vee(\neg p \wedge \neg q \wedge r))
$$

the original CNF formula can be transformed to the CDF formula:
((a)
$(\neg a \wedge b)$
$(\neg a \wedge \neg b \wedge c)$
($(\neg b)$
$(b \wedge c)$
$(b \wedge \neg c \wedge \neg d)$
$(b \wedge \neg c \wedge d \wedge \neg e) \quad) \wedge$
((b)
v
$(\neg b \wedge \neg c)$
$(\neg b \wedge c \wedge e)$
) \wedge
($\quad(\neg c)$
v
$(c \wedge d)$
which results in the consolidated satoku matrix on the right side of figure 72 , in contrast to the consolidated satoku matrix of the original "optimized" problem on the left side.
8. I could not find any rationale for CNF, other than the desire of human minds to reduce the amount of redundancy. Although syllogistic reasoning[BROWN] based on Blake's theory of syllogistic formulas does require CNF to acquire the set of prime implicants, it is entirely irrelevant to structural logic.

P	-	--	-	--
$s_{0_{0}}$	$1 \circ \circ$	----		--
s_{01}	-10	0---	-	--
$s_{0_{2}}$	$\bigcirc \circ 1$	--0-	-0-	01
$s_{1_{0}}$	-0-	$1 \circ \circ \circ$	0 --	--
$s_{1_{1}}$	--	-100	-0-	01
s_{12}	--0	$\bigcirc \circ 1 \circ$	--	10
s_{13}		$\bigcirc \circ \circ 1$	--0	
$s_{2_{0}}$	---	0---	$1 \circ \circ$	
s_{21}	--0	-0--	$\bigcirc 1 \circ$	
$s_{2_{2}}$		---0	$\bigcirc \circ 1$	
s_{30}	--0	-0--	---	10
s_{31}		--0-		$\bigcirc 1$

P	--	-		--
s_{0}	$1 \circ \circ$		---	--
$s_{0_{1}}$	-1。	0---	100	--
$s_{0_{2}}$	$\bigcirc \circ 1$	1000	001	01
$s_{1_{0}}$	-0-	$1 \circ \circ \circ$	0--	--
s_{11}	--0	$\bigcirc 1 \circ \circ$	100	01
s_{12}	--0	$\bigcirc \circ 1 \circ$	100	10
s_{13}	--0	$\bigcirc \circ \circ 1$	100	10
$s_{2_{0}}$	--0	0---	$1 \circ \circ$	
$s_{2_{1}}$	100	1000	-10	10
s_{2}	-0-	1000	$\bigcirc \circ 1$	01
S_{3}	--0	-0--	--0	$1 \circ$
s_{31}		--0 0	-0-	-1

Figure 72: satoku matrix for plain CNF problem with maximized conflicts

Note: This technique to enrich the CNF formula with redundant information is not essential and generally does not work with propositional problems in direct encoding (although it does reduce the amount of binary at-most-one clauses by identifying redundancies). See section 7.2 for the general principle in the satoku matrix.

Note: This "trick" is not proprietary to structural logic, it is just as well available for the usual mapping of CNF problems to graphs.

Appendix D. Examples

D.1. Examples for unassigned variables in provable satoku matrix

The core matrix of the CDF problem:

$$
\begin{align*}
& \left(\begin{array}{l}
a \vee \neg b \vee \neg c) \\
(d \vee \neg e \vee f)
\end{array} \wedge\right.
\end{align*}
$$

presents as shown in figure 73a. A possible full reduction of the satoku matrix to a decided, possible state row $s_{0_{1}}$ is shown in figure 73b.

The satoku matrix of the CDF problem augmented with variable clauses:
$\left(\begin{array}{ll}a \vee \neg b \vee \neg c) & \wedge \\ (d \vee \neg e \vee f) & \wedge \\ (a \vee \neg a) & \wedge \\ (b \vee \neg b) & \wedge \\ (c \vee \neg c) & \wedge \\ (d \vee \neg d) & \wedge \\ (e \vee \neg e) & \wedge \\ (f \vee \neg f) & \end{array}\right]$
presents as shown in figure 73c. Reducing the core matrix to the same state row $s_{0_{1}}$ as previously shown to be provable, assigns variables b and d as $b=\mathrm{F}, d=\mathrm{T}$, variables a, c, e and f remain unassigned (see figure 73d).
The satoku matrix of the CDF problem with maximized conflicts and augmented with variable clauses:

$\left(\begin{array}{ll}a \vee(\neg a \wedge \neg b) \vee(\neg a \wedge & b \wedge \neg c)\end{array}\right.$	\wedge	
$(d \vee(\neg d \wedge \neg e) \vee(\neg d \wedge$	$e \wedge f)$	\wedge
$(a \vee \neg a)$	\wedge	
$(b \vee \neg b)$	\wedge	
$(c \vee \neg c)$	\wedge	
$(d \vee \neg d)$	\wedge	
$(e \vee \neg e)$	\wedge	
$(f \vee \neg f)$		\wedge

presents as shown in figure 73 e . Reducing the core matrix to the same state row $s_{0_{1}}$ as previously shown to be provable, assigns variables a, b and d as $a=\mathrm{F}, b=\mathrm{F}, d=\mathrm{T}$, variables c, e and f remain unassigned (see figure 73f).

(a) Core satoku matrix

P	---	---	--	--	--	--	--	--	
$\begin{aligned} & s_{0_{0}} \\ & s_{0_{1}} \\ & s_{0_{2}} \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & --- \\ & --- \end{aligned}$	10 -- --	--- 0 - -	-- -- 0 1	---		$\left\lvert\, \begin{aligned} & -- \\ & -- \\ & -- \end{aligned}\right.$	
$\begin{aligned} & s_{1} 1_{0} \\ & s_{1} \\ & s_{1} \\ & s_{12} \\ & \hline \end{aligned}$	$\begin{aligned} & --- \\ & --- \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	-- -- --	--	$\begin{aligned} & -- \\ & -- \end{aligned}$	$\begin{aligned} & 10 \\ & -- \\ & -- \end{aligned}$	$\begin{gathered} -- \\ 0 \\ -1 \\ -\quad \end{gathered}$	$\begin{array}{\|c} \hline-- \\ -- \\ 10 \end{array}$	
$\begin{aligned} & s_{2} 0_{0} \\ & s_{2} \end{aligned}$	$\begin{aligned} & --- \\ & 0-- \end{aligned}$	--- ---	$\begin{array}{ll}1 & \circ \\ \circ & 1\end{array}$	---	--	--	--		$\begin{array}{r} a \\ \neg a \end{array}$
$\begin{aligned} & { }^{s_{3}{ }_{0}} \\ & s_{3} \\ & \hline \end{aligned}$	-0-	-	---	$\begin{array}{ll} 10 \\ \circ & 1 \end{array}$	---	-	--	-	$\begin{array}{r} b \\ \neg b \end{array}$
$\begin{aligned} & s_{4_{0}} \\ & s_{4} \end{aligned}$	--0	---	--	--	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	---	\|--	--	$\begin{array}{r} c \\ \neg c \end{array}$
$\begin{aligned} & { }^{s_{5}}{ }_{0} \\ & s_{5} \\ & \hline \end{aligned}$	---	--- $0--$	--	--	$\left\lvert\, \begin{aligned} & --- \\ & -- \end{aligned}\right.$	$\begin{array}{ll} \hline 1 & \circ \\ \circ & 1 \end{array}$	\|--	--	$\begin{array}{r} d \\ \neg d \end{array}$
$\begin{aligned} & s_{6} 6_{0} \\ & s_{6} \\ & \hline \end{aligned}$	---	-0-	--	--	--	--	$\begin{array}{ll} \hline 1 \circ \\ \circ \end{array}$	--	e e
$\begin{aligned} & { }^{s} 7_{0} \\ & { }^{s} 7_{1} \end{aligned}$	--- ---	$\begin{aligned} & \hline--- \\ & --0 \end{aligned}$	---	--	---	--	--	10	f $\neg f$

(c) satoku matrix matrix with plain variable assignments

(e) satoku matrix matrix with maximized variable conflict

P		-	-	-	-	-	-
$s_{0_{0}}$	\circ	\circ	\circ		0	0	0
s_{0}	\circ	1	\circ	1	0	0	
$s_{0_{2}}$	\circ	\circ	\circ	0	0	0	
s_{1}	0	1	0	1	\circ	\circ	
s_{1}	0	0	0	\circ	\circ	\circ	
s_{1}	0	0	0	\circ	\circ	\circ	

(b) Fully reduced provable satoku matrix

P	010	100	--	01	--	10	--	--	
$\begin{aligned} & { }^{s_{0} 0_{0}} \\ & { }^{s_{0}} \\ & { }^{s_{0}} \end{aligned}$	$\begin{array}{llll} \circ & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & \circ \end{array}$	$\begin{array}{lll} \hline 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{\|cc\|}0 & 0 \\ -- \\ 0 & 0\end{array}$	0 0 0 1 0 0	0 - 0 0	$\begin{array}{lll}0 & 0 \\ 1 & 0 \\ 0 & 0\end{array}$	0 0 -- 0 0	$\begin{array}{\|ll} \hline 0 & 0 \\ -- \\ 0 & 0 \end{array}$	
$\begin{aligned} & { }^{s_{1}}{ }_{0} \\ & s_{1}{ }_{1} \\ & s_{1} \\ & \hline \end{aligned}$	$\begin{array}{lll} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & \circ & \circ \\ \circ & \circ & \circ \end{array}$	$\begin{array}{ll} -- \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{ll} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{\|cc\|} \hline- & - \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{ll} 1 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{gathered} -- \\ 0 \end{gathered}$	$\begin{gathered} -- \\ 0 \end{gathered}$	
$\begin{aligned} & s_{2}{ }_{0} \\ & s_{2} \\ & \hline \end{aligned}$	$\begin{array}{lll} \hline 0 & 1 & 0 \\ 0 & 1 & 0 \end{array}$	$\begin{array}{lll} 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\begin{array}{lll} \hline 1 & \circ \\ \circ & 1 \end{array}$	$\begin{array}{lll} \hline 0 & 1 \\ 0 & 1 \end{array}$	--	$\begin{array}{ll} \hline 10 \\ 10 \end{array}$	--		
$\begin{array}{r} s_{3} 3_{0} \\ { }^{s_{3}} \\ \hline \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 1 & 0 & 0 \end{array}$		$\begin{array}{ll} \circ & 0 \\ \circ & 1 \end{array}$		$\begin{array}{ll} \hline 0 & 0 \\ 10 \end{array}$			$\begin{array}{r} b \\ \neg b \end{array}$
$\begin{aligned} & s_{4} 4_{0} \\ & s_{4} \end{aligned}$	$\begin{array}{lll} \hline 0 & 1 & 0 \\ 0 & 1 & 0 \end{array}$	$\begin{array}{lll} 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	--	$\begin{array}{ll} 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{ll} \hline 1 \circ \\ \circ & 1 \end{array}$	$\begin{array}{\|ll\|} \hline 10 \\ 10 \end{array}$	--	--	
$\begin{aligned} & s_{5} 5_{0} \\ & { }^{s_{5}} \end{aligned}$	$\begin{array}{lll} \hline 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 1 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	--	$\begin{array}{lll} 0 & 1 \\ 0 & 0 \end{array}$		$\begin{array}{ll} 1 & \circ \\ \circ & \circ \end{array}$	$\left\lvert\, \begin{gathered} -- \\ 0 \end{gathered}\right.$	--	$\begin{array}{r} d \\ \neg d \end{array}$
$\begin{aligned} & s_{6} 6_{0} \\ & s_{6} \end{aligned}$	$\begin{array}{lll} \hline 0 & 1 & 0 \\ 0 & 1 & 0 \end{array}$	$\begin{array}{lll} 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	--	$\begin{array}{lll} \hline 0 & 1 \\ 0 & 1 \end{array}$	--	$\begin{array}{\|ll\|} \hline 10 \\ 10 \end{array}$	$\begin{array}{lll} \hline 1 & \circ \\ \circ & 1 \end{array}$	--	e
$\begin{array}{r} { }^{{ }^{3} 7_{0}} \\ { } 7_{1} \\ \hline \end{array}$	$\begin{array}{lll} \hline 0 & 1 & 0 \\ 0 & 1 & 0 \end{array}$	$\begin{array}{lll} 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	--	$\begin{array}{lll}0 & 1 \\ 0 & 1\end{array}$	--	$\begin{array}{\|ll\|} \hline 10 \\ 10 \end{array}$		$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	$\begin{array}{r} f \\ \neg f \end{array}$

(d) State relations copied to matrix with variable assignments

P	010	100	01	01	--	10	--	-	
$s_{0}{ }_{0}$	$\bigcirc \circ \circ$	000	00	00	00	00	00	00	
$s_{0}{ }_{1}$	- 1 ○	100	01	01	--	10	--	-	
$s_{0_{2}}$	$\bigcirc \circ \circ$	000	00	00	00	00	00	00	
${ }^{s} 1_{0}$	010	$1 \circ \circ$	01	01	--	10	--	--	
$s_{1} 1_{1}$	000	$\bigcirc \circ \circ$	00	00	00	00	00	00	
$s_{1}{ }_{2}$	000	$\bigcirc \circ \circ$	00	00	00	00	00	00	
$s_{2}{ }_{0}$	000	000	$\bigcirc \circ$	00	00	00	00	00	a
$s_{2}{ }_{1}$	010	100	- 1	01	--	10	--	--	$\neg a$
${ }^{s} 3_{0}$	000	000	00	$\bigcirc \circ$	00	00	00	00	b
$s_{3}{ }_{1}$	010	100	01	- 1	--	10	--	--	$\neg b$
${ }^{s} 4_{0}$	010	100	01	01	10	10	--	-	c
$s_{4}{ }_{1}$	010	100	01	01	- 1	10	--	--	$\neg c$
${ }^{s} 5_{0}$		1000	01	01	--	$1 \circ$	--	--	d
${ }^{s_{5}}$	000	000	00	00	00	\bigcirc	00	00	$\neg d$
$s_{6}{ }_{0}$	010	100	01	01	--	10	$1 \circ$	-	e
$s_{6}{ }_{1}$	010	100	01	01	--	10	-1	--	$\neg e$
${ }^{s} 7_{0}$	010	100	01	01	--	10	--	$1 \circ$	f
${ }^{\prime} 7_{1}$	010	100	01	01	--	10	--	-1	$\neg f$

(f) State relations copied to matrix with maximized variable conflicts

Figure 73: Variable assignment in fully reduced provable satoku matrix

When consolidating the requirement for the superset relation $s_{1_{0}} \supseteq s_{0_{0}}$ (see figure 74a), the satoku matrix becomes provable, because $s_{1_{0}}$ consists only of decided possible cell rows (see figure 74b). When transferring the state relations to the satoku matrices for the CDF problems with augmented variables (equations (47), (48)), neither ends up with any variables globally assigned (see figure 74c, figure 74d).

P	---	---
$s^{0} 0$	$1 \circ \circ$	---
$s_{0}{ }_{1}$	-1	0--
${ }^{\mathrm{S}_{2}}$	- ○ 1	$0--$
s_{10}	-00	$1 \circ \circ$
${ }^{s_{1}} 1$	---	-10
$s_{1}{ }_{2}$		$\bigcirc \circ 1$

(a) Requirement indication for $s_{1_{0}} \supseteq s_{0_{0}}$

P	---	---	--	--	-	-	--	-	
$\begin{aligned} & s_{0_{0}} \\ & s_{0} \\ & s_{1} \\ & s_{0} \\ & \hline \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & 0-- \\ & 0-- \end{aligned}$	$\left\lvert\, \begin{gathered} 10 \\ --- \\ -0 \end{gathered}\right.$	$\left\lvert\, \begin{gathered} -- \\ 0 \\ -1 \end{gathered}\right.$	-- -- 0	-- -- --	$\begin{aligned} & -- \\ & -- \\ & -- \end{aligned}$	$\begin{aligned} & -- \\ & -- \end{aligned}$	
$\begin{aligned} & s_{1} 1_{0} \\ & s_{1} \\ & s_{1} \\ & \hline \end{aligned}$	$\begin{gathered} 100 \\ --- \\ --- \end{gathered}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{\|l\|} \hline 10 \\ -10 \end{array}$	$\left\lvert\, \begin{aligned} & --- \\ & -- \end{aligned}\right.$	--	$\left.\begin{array}{\|cc\|} \hline 1 & 0 \\ - & - \\ -- \end{array} \right\rvert\,$	$\left\lvert\, \begin{gathered} -- \\ 0 \\ -1 \\ -- \end{gathered}\right.$	$\left.\begin{array}{\|c\|} \hline-- \\ -- \\ 10 \end{array} \right\rvert\,$	
$\begin{aligned} & s_{2}{ }_{0} \\ & s_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & --- \\ & 0-- \end{aligned}$	$\begin{aligned} & --- \\ & 0-- \end{aligned}$	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	--	--	- -	--	--	$\begin{array}{r} a \\ \neg a \end{array}$
$\begin{array}{r} { }^{s_{3}}{ }_{0} \\ s_{3} \\ \hline \end{array}$	-	---	--	$\begin{array}{ll} 10 \\ \hline & 1 \end{array}$	---	- -	---	-	$\begin{array}{r} b \\ \neg b \end{array}$
$\begin{aligned} & s_{4_{0}} \\ & s_{4} \\ & \hline \end{aligned}$	--0	---	--	---	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	$\begin{aligned} & -- \\ & -- \end{aligned}$	--	--	$\begin{array}{r} c \\ \neg c \end{array}$
$\begin{aligned} & { }^{s_{5} 0_{0}} \\ & s_{5} \\ & \hline \end{aligned}$	---	$\begin{aligned} & --- \\ & 0-- \end{aligned}$	--	--	$--$	$\begin{array}{ll} 1 & \circ \\ \circ \end{array}$	$--$	--	$\begin{array}{r} d \\ \neg d \end{array}$
$\begin{aligned} & s_{6} 6_{0} \\ & s_{6} \\ & \hline \end{aligned}$	---	- 0 -	--	--	--	$\begin{aligned} & -- \\ & -- \end{aligned}$	$\begin{array}{\|lll} \hline 1 & \circ \\ \circ & 1 \end{array}$	--	$\begin{array}{r} e \\ \neg e \end{array}$
$\begin{aligned} & { }^{s} 7_{0} \\ & { }^{s} 7_{1} \\ & \hline \end{aligned}$	----	$\begin{aligned} & --- \\ & --0 \end{aligned}$	--	--	--	$--$	--	$\begin{array}{\|ll\|} \hline 1 & \circ \\ \circ & 1 \\ \hline \end{array}$	$\begin{array}{r} f \\ \neg f \end{array}$

(c) State relations copied to matrix with variable assignments

P	-	---
$s^{0_{0}}$	$1 \circ \circ$	---
$s^{0_{1}}$	-10	0--
s_{0}	$\bigcirc \circ 1$	0--
${ }^{s} 1_{0}$	100	$1 \circ \circ$
$s_{1}{ }_{1}$	---	- 10
${ }^{s_{1}}$	---	- 01

(b) consolidated requirement

P	-	-	--	--	--	--		-	
$\begin{aligned} & { }^{s_{0} 0_{0}} \\ & s_{0}{ }^{s_{1}} \\ & s_{0_{2}} \end{aligned}$	$\begin{array}{lll} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline--- \\ 0-- \\ 0-- \end{array}$	$\begin{array}{lll} \hline 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ \hline \end{array}$	$\begin{array}{ll} - & - \\ 0 & 1 \\ 1 & 0 \end{array}$	$\begin{aligned} & -- \\ & -- \\ & 01 \end{aligned}$	$\begin{aligned} & --- \\ & -- \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$		
$\begin{aligned} & { }^{s_{1}}{ }_{0} \\ & s_{1}{ }_{1} \\ & s_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & -10- \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	10 --1	--	$\begin{aligned} & -- \\ & -- \end{aligned}$	$\begin{array}{ll} \hline 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{cc} -- \\ 0 & 1 \\ 1 & 0 \end{array}$	$\left\lvert\, \begin{gathered} -- \\ -- \\ 10 \end{gathered}\right.$	
$\begin{aligned} & s_{2}{ }_{20} \\ & s_{2} \\ & \hline \end{aligned}$	$\begin{array}{lll} 1 & 0 & 0 \\ 0 & - & - \end{array}$	$\begin{array}{\|c\|} \hline--- \\ 0-- \end{array}$	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	--	--	$\begin{aligned} & -- \\ & -- \end{aligned}$	--	--	
$\begin{array}{r} s_{3} 3_{0} \\ { }^{s_{3}} \\ \hline \end{array}$	$-0-$ --0	---	--	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	---	$\begin{aligned} & -- \\ & -- \end{aligned}$			$\begin{array}{r} b \\ \square b \end{array}$
$\begin{aligned} & { }^{s_{4}} 0 \\ & s_{4} \\ & \hline \end{aligned}$	--0	---	-	---	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	$\left\lvert\, \begin{aligned} & -- \\ & -- \end{aligned}\right.$	- -	--	
$\begin{aligned} & s_{5_{0}} \\ & s_{5} \\ & \hline \end{aligned}$	-	$\begin{array}{lll} 1 & 0 & 0 \\ 0 & - & - \end{array}$	--	---	$\begin{aligned} & --- \\ & -- \end{aligned}$	$\begin{array}{ll} \hline 1 & \circ \\ \circ & 1 \end{array}$	$\begin{aligned} & --- \\ & -- \end{aligned}$	$--$	$\begin{array}{r} d \\ \neg d \end{array}$
$\begin{aligned} & { }^{s_{6}} 0 \\ & s_{6} \\ & \hline \end{aligned}$	---	$\begin{aligned} & -0- \\ & --0 \end{aligned}$	--	--	--	$\begin{aligned} & -- \\ & -- \end{aligned}$	$\begin{array}{ll} \hline 1 & \circ \\ \circ & 1 \end{array}$	--	$\stackrel{e}{ }$
$\begin{array}{r} { }^{{ }^{3} 7_{0}} \\ { } 7_{1} \\ \hline \end{array}$	---	$\begin{array}{\|l\|} \hline--- \\ --0 \end{array}$	--	--	--	$--$	$--$	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	f $\neg f$

(d) State relations copied to matrix with maximized variable conflicts

Figure 74: Variable assignment in provable satoku matrix derived from subset requirement

When elminating distractor state rows $s_{0_{0}}, s_{0_{1}}$ based on intra-clause superset relations $s_{0_{0}} \supseteq s_{0_{1}}$ and $s_{1_{0}} \supseteq s_{1_{1}}$ (see figure 75 a), the satoku matrix becomes provable, because all cells have a maximum of 2 states (see figure 75b). When transferring the state relations to the satoku matrices for the CDF problems with augmented variables equation (47) ends up without any variables globally assigned (see figure 75 c) and equation (48) results in a global assignment of variables $a=\mathrm{F}, d=\mathrm{F}$ (see figure 75 d).

P	0	--	0	--	
$s_{0_{0}}$	\circ	\circ	\circ	0	0
s_{0}	\circ	0			
s_{0}	1	\circ	0	--	
$s_{0_{2}}$	\circ	\circ	1	0	--
s_{1}	0	0	0	\circ	\circ
s_{1}	\circ				
s_{1}	0	--	\circ	1	\circ
s_{1}	0	--	\circ	\circ	1

(a) Distractors $s_{0_{0}} \supseteq s_{0_{1}}, s_{1_{0}} \supseteq s_{1_{1}}$

P	--	--	--	--	--	--	--	--	
$s_{0_{0}}$	1	\circ	--	--	0	1	--	--	--
s_{0}	\circ	--							
${ }^{{ }_{0}}$		--	--	--	0	1	--	--	--
$s_{1_{0}}$	--	1	\circ	--	---	--	--	0	1
	--								
s_{1}	--	\circ	1	--	--	--	--	--	1

(c) State relations copied to matrix with variable assignments

P	--	--
$s_{0_{0}}$	$1 \circ$	\circ
s_{0}	--	
$s_{0_{1}}$	\circ	1

(b) Distractors $s_{0_{0}}^{\prime}, s_{1_{0}}^{\prime}$ removed

P	--	--	01	--	--	01	--	--	
$\begin{aligned} & { }^{s_{0} 0_{0}} \\ & { }^{s_{0}} \\ & \hline \end{aligned}$	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	---	0 $\begin{array}{ll}1 \\ 0 & 1\end{array}$	O 01	---	$\begin{array}{lll}0 & 1 \\ 0 & 1\end{array}$	---	-- --	
$\begin{array}{r} s_{10}{ }_{10} \\ s_{1} \\ \hline \end{array}$	--	$\begin{array}{lll}1 & \circ \\ \circ & 1\end{array}$	$\begin{array}{lll}0 & 1 \\ 0 & 1\end{array}$	---	---	$\begin{array}{lll}0 & 1 \\ 0 & 1\end{array}$	$\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{\|c\|} \hline-- \\ 1 \end{array}$	
$\begin{aligned} & s_{2}{ }_{0} \\ & s_{2} \\ & \hline \end{aligned}$	00	00	$\begin{array}{lll} \hline & \circ \\ \circ & 1 \end{array}$	000	00	$\begin{array}{\|ll\|} \hline 0 & 0 \\ 0 & 1 \end{array}$	00		
$\begin{aligned} & s_{3_{0}} \\ & s_{3} \end{aligned}$	$\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}$	--	0 $\begin{array}{ll}1 \\ 0 & 1\end{array}$	$\begin{array}{\|ll\|}1 & \circ \\ \circ & 1\end{array}$	O 1	$\begin{array}{lll} \hline 0 & 1 \\ 0 & 1 \end{array}$	--		$\begin{array}{r} b \\ \neg b \end{array}$
$\begin{array}{r} s_{4} 4_{0} \\ s_{4} \\ \hline \end{array}$	10	--	$\begin{array}{\|ll\|} \hline 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{\|cc\|} \hline 0 & 1 \\ - & - \\ \hline \end{array}$	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	$\begin{array}{\|ll\|} \hline 0 & 1 \\ 0 & 1 \end{array}$	--	---	
$\begin{aligned} & { }^{s_{5}}{ }_{0} \\ & { }^{s_{5}} \\ & \hline \end{aligned}$		00	$\begin{array}{\|ll\|} \hline 0 & 0 \\ 0 & 1 \end{array}$	000	$\begin{aligned} & 00 \\ & -- \end{aligned}$	$\begin{array}{ll} \hline \circ & 0 \\ \circ & 1 \end{array}$		00	$\begin{array}{r} d \\ \neg d \end{array}$
$\begin{aligned} & s_{6} 6_{0} \\ & s_{6} \\ & \hline \end{aligned}$	--	$\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{lll} \hline 0 & 1 \\ 0 & 1 \end{array}$	---	---	$\begin{array}{lll} \hline 0 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{ll} 1 & \circ \\ \circ & 1 \end{array}$	10	e \neg
$\begin{aligned} & { }^{s} 7_{0} \\ & { }^{s} 7_{1} \\ & \hline \end{aligned}$	---	- 10	0 $\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}$	---	---	$\begin{array}{lll} \hline 0 & 1 \\ 0 & 1 \end{array}$	$-\quad-$	$\begin{array}{\|ll\|} \hline 1 & \circ \\ 0 & 1 \end{array}$	$\begin{array}{r} f \\ \neg f \end{array}$

(d) State relations copied to matrix with maximized variable conflicts

Figure 75: Variable assignment in provable satoku matrix derived from distractor elimination

These examples show that there is no strict correlation between a set of logical variables and the core matrix of a CDF problem. The actual problem is located in the core matrix. Assigning truth values to variables does eventually solve the problem but it happens in an indirect random manner.

D.2. Worst case run-time complexities

The CDF problem from equation (46) has m disjunctive k-clauses and n variables, $k=3, m=2, n=$ 6.

The worst case run-time complexity for a brute force decision over the variables is $2^{n}=2^{6}=64$ decisions.
A full merge of all cells in the core matrix (see figure 73a) requires $k^{m}=3^{2}=9$ merge operations.
Evaluating all max-2-splits of the core matrix produces $\lceil k / 2\rceil^{m}=\lceil 3 / 2\rceil^{2}=2^{2}=4$ max-2-state matrices.

The CDF problem in equation (49) has m disjunctive k-clauses and n^{\prime} variables, $n^{\prime}=10$.

$$
\begin{array}{ll}
\left(\begin{array}{ll}
\left(x_{0} \wedge \neg x_{6}\right) & \vee \\
\left(\neg x_{0} \wedge \neg x_{1} \wedge x_{7}\right) & \vee \\
\left(\neg x_{0} \wedge x_{1} \wedge \neg x_{2}\right) &)
\end{array} \wedge\right. \\
\left(\begin{array}{ll}
3 \wedge \wedge & \wedge
\end{array}\right) & \vee \\
\left(\neg x_{3} \wedge \neg x_{4} \wedge \neg x_{9}\right) & \vee \\
\left(\neg x_{3} \wedge x_{4} \wedge x_{5}\right) &) \tag{49}
\end{array}
$$

It presents the same core matrix (see figure 76) as the CDF problem from equation (46).
The clause-based complexitites for a full merge and max-2-splits are therefore the same. However, the number of possible decisions is $2^{n^{\prime}}=2^{10}=1024$.

P	---	---	--	--	---	--	--	--	--	---	--	--			
$s_{0_{0}}$	1	\circ	\circ	---		1	0	--	---	--	--	--	0	1	---

Figure 76: 2 clause, 10 variable satoku matrix

The variable decision complexity is the most vague variant ${ }^{9}$. Merging all core matrix clauses is more accurate, but max-2-state splits are most efficient and accurately describe all matrices without having to resort to a core matrix with an arbitrary minimum of $k=3$ states per clause. The calulation in equation (50)

$$
\begin{equation*}
\mid 2 \text {-state matrices } \mid=\lceil k / 2\rceil^{m} \tag{50}
\end{equation*}
$$

accurately results in 1 for $k=(1,2)$, implying no further effort beyond consolidation to determine provability and even shows correctly, that there is no provable satoku matrix for $k=0$.

D.3. Examples for Proof of Advance Decisions

Here are some examples to show that it is not possible to construct a state row $s_{x_{y}}$, that changes provability of a satoku matrix \mathbb{S}, when a state row $s_{i_{j}}$ is a superset of another state row $s_{e_{f}}$.
State row $s_{1_{1}}$ in figure 77 is a superset of state row $s_{0_{1}}$. When $s_{1_{1}}$ is modified to require $s_{0_{1_{0_{1}}}}$, provability of satoku matrix \mathbb{S} would only change, if it was possible that $s_{1_{1_{1}}}$ was required in another state row $s_{x_{y}}$, while CFR $s_{x_{y_{0_{1}}}}$ was impossible.
9. bordering on absurdity

P	--	-	---	---	---
$\begin{aligned} & s_{0_{0}} \\ & s_{0} \\ & s_{1} \\ & s_{0_{2}} \end{aligned}$	$\begin{array}{lll} \hline & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$		$\begin{array}{\|c} \hline--- \\ 0-- \\ --- \end{array}$	$\begin{aligned} & --- \\ & --- \end{aligned}$	$\begin{aligned} & --- \\ & --- \end{aligned}$
$\begin{aligned} & s_{1_{0}} \\ & s_{1} \\ & s_{1} \\ & s_{1} \\ & \hline \end{aligned}$		$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$0--$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	---
$\begin{aligned} & s_{2_{0}} \\ & s_{2}{ }_{1} \\ & s_{2} \\ & s_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & -0- \\ & --- \end{aligned}$	$\left\lvert\, \begin{aligned} & -0- \\ & --- \end{aligned}\right.$	$\begin{array}{llll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{\|l} --- \\ --- \end{array}$	---
$\begin{aligned} & s_{3}{ }_{3} \\ & s_{3} \\ & s_{1} \\ & s_{3} \\ & \hline \end{aligned}$	--- ---	---	----	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	---
$\begin{aligned} & s_{4_{0}} \\ & s_{4} \\ & s_{1} \\ & s_{2} \end{aligned}$	---	---	----	---	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$

Figure 77: conflict-superset-000

This situation is constructed in $s_{4_{0}}$ of figure 78a. The impossible $\mathrm{CFR} s_{4_{0_{0_{1}}}}$ has caused its mirror state $s_{0_{1_{4}}}$ to become impossible too, which in turn breaks the superset relation of $s_{1_{1}}$ to $s_{0_{1}}$. To restore the superset relation, $s_{1_{1_{4}}}$ must also become impossible as shown in figure 78 b . The consequence is, that the mirror state $s_{4_{0_{1}}}$ also becomes impossible. However, this renders cell row $r_{4_{0_{1}}}$ impossible, so that the entire state row $s_{4_{0}}$ becomes impossible.

P	---	---	---	---	---
$\begin{aligned} & { }^{s_{0} 0_{0}} \\ & { }^{s_{0}} \\ & s_{1}{ }^{s_{2}} \\ & \hline \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$				$0--$
$\begin{aligned} & { }^{s_{1} 1_{0}} \\ & s_{1}{ }_{1} \\ & s_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & --- \\ & --- \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$		$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{array}{\|c\|} \hline 0-- \\ --- \\ 0-- \end{array}$
$\begin{aligned} & s_{2} 2_{0} \\ & s_{2} \\ & s_{2} \end{aligned}$	$\begin{aligned} & -0- \\ & --- \end{aligned}$	$\left\lvert\, \begin{aligned} & -0- \\ & --- \end{aligned}\right.$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$		---
$\begin{aligned} & s_{3_{0}} \\ & s_{3} \\ & s_{1} \\ & s_{3} \\ & \hline \end{aligned}$	$\begin{aligned} & --- \\ & --- \end{aligned}$	$-0-$	----	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	----
$\begin{aligned} & s_{4_{0}} \\ & s_{4} \\ & s_{4} \\ & s_{4} \\ & \hline \end{aligned}$	- 0-	$0-0$	$\begin{aligned} & --- \\ & --- \end{aligned}$	---	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$

(a) conflict-superset-direct-000

P	---				
$\begin{aligned} & { }^{s_{0_{0}}} \\ & { }^{s_{0}} \\ & s_{0_{2}} \\ & \hline \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$		0 - -		$0-$
$\begin{aligned} & s_{1} 1_{0} \\ & s_{1}{ }_{1} \\ & s_{1} \end{aligned}$		$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & --- \\ & 0-- \end{aligned}$	$-0-$	$\left\lvert\, \begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}\right.$
$\begin{aligned} & s_{2} 2_{0} \\ & s_{2} \\ & s_{2} \end{aligned}$		$\begin{aligned} & -0- \\ & --- \\ & --- \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$-$	--- --- ---
$\begin{aligned} & { }^{s_{3}{ }_{0}} \\ & s_{3} \\ & s_{3} \\ & s_{3} \end{aligned}$		$\begin{aligned} & --- \\ & -0- \end{aligned}$		$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	--- --- ---
$\begin{aligned} & s_{4_{0}} \\ & s_{4} \\ & s_{4} \\ & s_{4} \\ & \hline \end{aligned}$	-	000	-1	$1-$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$

(b) conflict-superset-direct-001

Figure 78: conflict-superset-direct

When the impossible CFR for the subset state row $s_{g_{h}}$ is required indirectly, the superset property of state row $s_{i_{j}}$ is not violated, like the condition in state row $s_{4_{0}}$ of figure 79a requiring state row $s_{2_{0}}$ shows. However, consolidation will merge $s_{2_{0_{1}}}$ into $s_{4_{0_{1}}}$ and therefore cell row $r_{4_{0_{1}}}$ will become impossible.

To avoid this, $s_{2_{0_{11}}}$ would have to be possible (see figure 79a), which would also make $s_{1_{1_{0}}}$ possible, thus again violating the necessary superset property of $s_{1_{1}}$.

P	---	-	---	---	---
$\begin{aligned} & s_{0_{0}} \\ & s_{0} \\ & s_{1} \\ & s_{0_{2}} \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$		$\begin{gathered} \hline--- \\ 0-- \\ --- \end{gathered}$	$\begin{aligned} & \hline--- \\ & --- \end{aligned}$	---
$\begin{aligned} & s_{1_{0}} \\ & s_{1} \\ & s_{1} \\ & s_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & --- \\ & --- \end{aligned}$	$\left.\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array} \right\rvert\,$	$\begin{gathered} 0-- \\ --- \end{gathered}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{gathered} 0-- \\ --- \\ 0-- \end{gathered}$
$\begin{aligned} & s_{2}{ }_{0} \\ & s_{2}{ }_{1} \\ & s_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & -0- \\ & --- \end{aligned}$	$\left\lvert\, \begin{aligned} & -0- \\ & --- \end{aligned}\right.$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & --- \\ & --- \end{aligned}$	$\begin{aligned} & --- \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & s_{3_{0}} \\ & s_{3} \\ & s_{3} \\ & s_{3} \end{aligned}$	--- ---	$\begin{aligned} & --- \\ & -0- \end{aligned}$	----	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	---
$\begin{aligned} & s_{4} 4_{0} \\ & s_{4}{ }_{1} \\ & s_{4}{ }_{2} \\ & \hline \end{aligned}$	---	$\begin{gathered} 0-0 \\ --- \end{gathered}$	$\begin{aligned} & -00 \\ & ---\quad \end{aligned}$	---	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$

(a) conflict-superset-indirect-001

P	---	---	---	---	--
$\begin{aligned} & { }^{s_{0} 0_{0}} \\ & { }^{s_{0}} \\ & s_{0}{ }^{s_{2}} \\ & \hline \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & --- \\ & --- \\ & --- \end{aligned}$		$\begin{aligned} & --- \\ & --- \end{aligned}$	---
$\begin{array}{r} s_{10} \\ s_{1} \\ s_{1} \\ s_{12} \\ \hline \end{array}$		$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$		$\begin{aligned} & --- \\ & -0- \\ & --- \end{aligned}$	$\begin{gathered} 0-- \\ --- \\ 0-- \end{gathered}$
$\begin{aligned} & s_{2}{ }_{2} \\ & s_{2} \\ & s_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & -0- \\ & --- \end{aligned}$		$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$		$\begin{aligned} & --- \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & s_{3_{0}} \\ & s_{3} \\ & s_{1} \\ & s_{3} \\ & \hline \end{aligned}$		---	---	$\begin{array}{lll} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	---
$\begin{aligned} & s_{4_{0}} \\ & s_{4} \\ & s_{4} \end{aligned}$	--- ---	$\begin{gathered} 0-0 \\ --- \end{gathered}$	$\begin{aligned} & \hline-00 \\ & --- \end{aligned}$	----	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$

(b) conflict-superset-indirect-002

Figure 79: conflict-superset-indirect

It is, however, perfectly possible for a condition to exist in a consolidated satoku matrix \mathbb{S}, that requires a state row $s_{g_{h}}$ and is mutually exclusive with a state row $s_{i_{j}}$, when state row $s_{g_{h}}$ is a true subset of state row $s_{i_{j}}$.
In figure 80 a, state row $s_{0_{1}}$ is a true subset of state row $s_{1_{1}}$, and state row $s_{4_{0}}$ requires state $s_{0_{0_{0_{1}}}}$ and is mutually exclusive with state $s_{1_{1_{1}}}$. After consolidation in figure 80b, the condition still holds.

P	---	---	---	--	-
$\begin{aligned} & { }^{{ }^{s} 0_{0}} \\ & { }^{s_{0}} \\ & { }^{s_{0}}{ }_{2} \\ & \hline \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	----			$\begin{gathered} 0-- \\ --- \\ 0-- \end{gathered}$
$\begin{array}{r} s_{10} \\ s_{1} \\ s_{1} \\ s_{12} \\ \hline \end{array}$		$\begin{array}{llll} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left\|\begin{array}{c} --- \\ 0-- \\ --- \end{array}\right\|$	- 0 -	$\begin{aligned} & --- \\ & 0-- \end{aligned}$
$\begin{aligned} & s_{2}{ }_{2} \\ & s_{21} \\ & s_{2} \\ & \hline \end{aligned}$	$-0-$ ---	$\left\lvert\, \begin{aligned} & \hline-0- \\ & --- \end{aligned}\right.$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	--- --- ---	---
$\begin{aligned} & { }^{s_{3}}{ }_{0} \\ & s_{3} \\ & s_{1} \\ & { }^{s_{2}} \\ & \hline \end{aligned}$	--- ---	$\left\lvert\, \begin{array}{l\|} --- \\ -0- \end{array}\right.$	---	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	----
$\begin{aligned} & \hline s_{4_{0}} \\ & s_{4_{1}} \\ & s_{4_{2}} \\ & \hline \end{aligned}$	0-0	$-0-$	----	--- --- ---	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$

(a) Subset required, superset impossible

P	---	---	---	---	---
$\begin{aligned} & s_{0_{0}} \\ & s_{0}{ }_{0} \\ & s_{0_{2}} \\ & \hline \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	----	$\begin{aligned} & --- \\ & 0-- \end{aligned}$		$\begin{gathered} \hline 0-- \\ --- \\ 0-- \end{gathered}$
$\begin{aligned} & s_{1}{ }_{0} \\ & s_{1} \\ & s_{1} \\ & s_{12} \\ & \hline \end{aligned}$	$--$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$0--$ $---$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{aligned} & --- \\ & 0-- \end{aligned}$
$\begin{aligned} & s_{2_{0}} \\ & s_{2} \\ & s_{2} \\ & s_{2} \end{aligned}$	$\begin{aligned} & -0- \\ & --- \end{aligned}$	$\begin{aligned} & -0- \\ & --- \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & --- \\ & --- \end{aligned}$	$0--$ ---
$\begin{aligned} & s_{3_{0}} \\ & s_{3} \\ & s_{1} \\ & s_{3} \\ & \hline \end{aligned}$	$\begin{aligned} & -- \\ & -- \end{aligned}$	--- $-0-$	---	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	---
$\begin{aligned} & s_{4_{0}} \\ & s_{4} \\ & s_{4} \end{aligned}$	010	$-0-$	$0--$	- - -	$\begin{array}{lll} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$

(b) satoku matrix \mathbb{S} consolidated

Figure 80: True subset $s_{0_{1}}$ required, superset $s_{1_{1}}$ impossible

D.4. Example: conflict detection by advance decision

With a 2-variable contradiction polynomially expanded to 3-SAT:

$$
\begin{aligned}
& (\neg p \vee \neg q \vee \neg a) \wedge \\
& (\neg p \vee \neg q \vee a) \wedge \\
& (\neg p \vee q \vee \neg) \wedge \\
& (\neg p \vee q \vee b) \wedge \\
& \left(\begin{array}{c}
p \vee \neg q \vee \neg c) \wedge \\
(p \vee \neg q \vee c) \wedge \\
(p \vee q \vee \neg d) \wedge \\
(p \vee q \vee d)
\end{array}\right.
\end{aligned}
$$

The advance decision algorithm (see section 7.2) determines unsatisfiability during the first decision. Figure 81a shows an advance decision: if $s_{0_{0_{0}}}$ is selected, then $s_{1_{0_{1}}}$ is also selected, and vice versa.

P	---	--	-					
$\begin{aligned} & { }^{s_{0} 0_{0}} \\ & { }^{s_{0}} \\ & s_{0}{ }^{0_{2}} \\ & \hline \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{lll} -0 & 0 \\ 0 & -- \\ 0 & -0 \end{array}$	$\begin{aligned} & -0- \\ & --- \end{aligned}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$-$	$\begin{gathered} 0-- \\ --- \end{gathered}$	$\begin{aligned} & 0-- \\ & -0- \end{aligned}$	$\begin{aligned} & 0-- \\ & -0-- \end{aligned}$
$\begin{array}{r} s_{10} \\ s_{1} \\ s_{1} \\ s_{12} \\ \hline \end{array}$	$\begin{aligned} & -00 \\ & 0-0 \\ & 0-0 \end{aligned}$	$\begin{array}{llll} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{aligned} & --- \\ & -0- \end{aligned}\right.$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{aligned} & 0-- \\ & --- \end{aligned}$	$\begin{gathered} 0-- \\ --- \end{gathered}$	$\begin{aligned} & 0-- \\ & -0- \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \end{aligned}$
$\begin{aligned} & s_{2}{ }_{2} \\ & s_{2} \\ & s_{2} \\ & s_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\left\lvert\, \begin{aligned} & --- \\ & -0-\end{aligned}\right.$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}\right.$	$\begin{gathered} 0-- \\ -0- \end{gathered}$	$\begin{aligned} & 0-- \\ & -0- \end{aligned}$		$0--$
$\begin{aligned} & s_{3_{0}} \\ & s_{3} \\ & s_{1} \\ & s_{3} \\ & \hline \end{aligned}$	--- $-0-$	---	$\begin{aligned} & --- \\ & --0 \end{aligned}$	$\begin{array}{\|lll} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & 0-- \\ & -0- \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \end{aligned}$	$-$	$-$
$\begin{aligned} & s_{4_{0}} \\ & s_{4} \\ & s_{4} \\ & s_{4} \\ & \hline \end{aligned}$		$\begin{gathered} 0-- \\ --- \end{gathered}$	$\begin{aligned} & 0-- \\ & -0- \end{aligned}$	$\begin{gathered} 0-- \\ -0- \end{gathered}$	$\begin{array}{lll} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}$	$\begin{aligned} & --- \\ & -0- \\ & --- \end{aligned}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$
$\begin{aligned} & { }^{s_{5} 5_{0}} \\ & s_{5_{1}} \\ & { }_{s_{5}} \end{aligned}$	0	$\begin{aligned} & 0-- \\ & --- \\ & --- \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \end{aligned}$	$\begin{aligned} & --- \\ & ---- \\ & --0 \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & -0- \\ & -\quad-\quad \end{aligned}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$
$\begin{aligned} & { }^{s_{6}}{ }_{0} \\ & { }^{s_{6}} \\ & s_{6} \\ & \hline \end{aligned}$	$\begin{gathered} 0-- \\ -0- \end{gathered}$	$\begin{gathered} 0-- \\ -0- \end{gathered}$	0	$\begin{gathered} 0-- \\ ---- \end{gathered}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}$
$\begin{array}{r} { }^{s} 7_{0} \\ { }^{s} 7_{1} \\ { }^{s} 7_{2} \\ \hline \end{array}$	$\begin{gathered} 0-- \\ -0- \end{gathered}$	$\left\|\begin{array}{c} 0-- \\ -0- \end{array}\right\|$	$\begin{aligned} & 0-- \\ & ---- \end{aligned}$	$0--$ $---$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}$	$\begin{array}{lll} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$

(a) Request $s_{0_{0_{1}}}, s_{1_{0_{0}}}$

P	--	--	--	---	---	-	---	---
$\begin{aligned} & { }^{{ }^{s} 0_{0}} \\ & { }^{s_{0}} \\ & { }^{s_{0}}{ }_{2} \\ & \hline \end{aligned}$	$\begin{array}{llll} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & 100 \\ & 0 \\ & 0 \\ & 0 \end{aligned} \quad-\quad-$	$\left\lvert\, \begin{aligned} & --- \\ & -0- \\ & -0- \end{aligned}\right.$	$\begin{aligned} & --- \\ & -0- \\ & -0- \end{aligned}$	$0--$	$\begin{gathered} 0-- \\ --- \end{gathered}$	$\left\lvert\, \begin{aligned} & 0-- \\ & -0- \\ & -0- \end{aligned}\right.$	$\begin{aligned} & 0-- \\ & -0- \\ & -0- \end{aligned}$
$\begin{aligned} & { }^{s_{1}}{ }_{0} \\ & s_{1} \\ & s_{1} \\ & s_{1} \\ & \hline \end{aligned}$	$\begin{array}{lll} 1 & 0 & 0 \\ 0 & - & - \\ 0 & 1 & 0 \end{array}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & -0- \\ & -0- \end{aligned}$	$\begin{aligned} & -0- \\ & -0- \end{aligned}$	0		$\left\lvert\, \begin{aligned} & 0-- \\ & -0- \\ & -0- \end{aligned}\right.$	$\begin{aligned} & 0-- \\ & -0- \\ & -0- \end{aligned}$
$\begin{aligned} & s_{2}{ }_{0} \\ & s_{2} \\ & s_{2} \\ & s_{2} \\ & \hline \end{aligned}$	100	- 100	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & 0 \\ \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}\right.$	$\left\lvert\, \begin{array}{lll} 0 & - & - \\ 0 & 0 & 1 \end{array}\right.$	$\begin{array}{ll} 0 & - \\ 0 & 0 \end{array}$	$\begin{aligned} & 0-- \\ & 0-- \end{aligned}$	$\begin{aligned} & 0-- \\ & 0-- \end{aligned}$
$\begin{array}{r} { }^{s_{3}}{ }_{0} \\ { }^{s_{1}} \\ { }^{s_{3}} \\ \hline \end{array}$	$\begin{aligned} & --- \\ & -00 \end{aligned}$	--- -0	$\left\lvert\, \begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}\right.$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$0--$ $-0-$	$\left\lvert\, \begin{gathered} 0-- \\ -0- \end{gathered}\right.$	$0--$	$0--$
$\begin{aligned} & s_{4_{0}} \\ & s_{4_{1}} \\ & s_{4_{2}} \\ & \hline \end{aligned}$		0	$\begin{gathered} 00- \\ -0- \\ -\quad \end{gathered}$	$-0-$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}\right.$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$
$\begin{aligned} & { }^{{ }^{s_{5}} 0} \\ & s_{5} \\ & s_{1} \\ & s_{5}{ }_{2} \\ & \hline \end{aligned}$	0	$0--$	$\begin{aligned} & 00- \\ & -0- \\ & -0- \end{aligned}$	$-0-$	$\left\lvert\, \begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}\right.$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$
$\begin{aligned} & { }^{s_{6}} 0 \\ & { }^{s_{6}} \\ & { }^{s_{6}} \\ & \hline \end{aligned}$	$\begin{aligned} & 0-- \\ & -00 \end{aligned}$	$\begin{aligned} & 0-- \\ & -00 \end{aligned}$	00-	$0--$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}$
$\begin{aligned} & { }^{s} 7_{0} \\ & { }^{s} 7_{1} \\ & { }^{s} 7_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & 0-- \\ & -00 \end{aligned}$	$\begin{aligned} & 0-- \\ & -00 \end{aligned}$	$\left\lvert\, \begin{gathered} 0 \end{gathered} 0-\right.$	$\begin{gathered} 0-- \\ --- \end{gathered}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\left\lvert\, \begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}\right.$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$

(c) Satisfy $s_{1_{2_{0_{1}}}}, s_{2_{1_{0}}}, s_{2_{1_{4_{2}}}} \rightarrow \neg r_{2_{1_{5}}}$

P	-	---	---	-	---	---		
$\begin{aligned} & { }^{s_{0}}{ }_{0} \\ & s_{0} 0_{1} \\ & s_{0} \\ & \hline \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{lll} 1 & 0 & 0 \\ 0 & - & - \\ 0 & 1 & 0 \end{array}$	$\left(\begin{array}{l} --- \\ -0- \\ -0- \end{array}\right.$	--- $-0-$ $-0-$	0--	$\begin{array}{\|c\|c} \hline 0-- & 0 \\ --- & - \end{array}$	$\begin{aligned} & 0-- \\ & -0- \\ & -0- \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \\ & -0- \end{aligned}$
$\begin{aligned} & s_{1}{ }_{0} \\ & s_{1} \\ & s_{1} \\ & s_{1} \end{aligned}$	$\begin{aligned} & 100 \\ & 0-- \\ & 0-0 \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\left\|\begin{array}{l} --- \\ -0- \end{array}\right\|$	$\begin{aligned} & 0-- \\ & --- \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \end{aligned}$
$\begin{aligned} & s_{2}{ }_{0} \\ & s_{2} \\ & s_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & --- \\ & -00 \end{aligned}$	--- $-0-$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left\|\begin{array}{l} --- \\ --- \\ --0 \end{array}\right\|$	$\left\|\begin{array}{c} 0-- \\ -0- \end{array}\right\|$	$\begin{aligned} & 0-- \\ & -0- \end{aligned}$	$\begin{aligned} & 0-- \\ & --- \end{aligned}$	$0--$
$\begin{aligned} & s_{3_{0}} \\ & s_{3} \\ & s_{1} \\ & s_{3} \end{aligned}$	$\begin{aligned} & --- \\ & -00 \end{aligned}$	---	$\left\lvert\, \begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}\right.$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$0--$ $-0-$	$\begin{gathered} 0-- \\ -0- \end{gathered}$	$0--$	$0--$
$\begin{aligned} & s_{4} 4_{0} \\ & s_{4} \\ & s_{1} \\ & s_{4} \\ & \hline \end{aligned}$			$\begin{aligned} & 0-- \\ & -0- \end{aligned}$	$\begin{gathered} 0-- \\ -0- \end{gathered}$	$\begin{array}{lll} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$
$\begin{aligned} & { }^{s_{5}}{ }_{0} \\ & s_{5} \\ & s_{1} \\ & s_{5} \\ & \hline \end{aligned}$	0	0	$\left\lvert\, \begin{gathered} 0-- \\ -0- \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 0-- \\ -0- \end{gathered}\right.$	$\left\lvert\, \begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}\right.$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$
$\begin{aligned} & s_{6} 6_{0} \\ & s_{6} \\ & s_{1} \\ & s_{6} \\ & \hline \end{aligned}$	$\begin{gathered} 0-- \\ -00 \end{gathered}$	$\left\lvert\, \begin{gathered} 0-- \\ -0- \end{gathered}\right.$	$0--$	$0--$	---	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}$
$\begin{aligned} & { }^{{ }^{7_{0}}} 0 \\ & { }^{s} 7_{1} \\ & s_{7} \\ & \hline \end{aligned}$	$\begin{gathered} 0-- \\ -00 \end{gathered}$	$\left\|\begin{array}{c} 0-- \\ -0- \end{array}\right\|$	$0--$	0	---	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}$	$\begin{array}{lll} \hline & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$

(b) Satisfy $s_{0_{0_{1}}}, s_{1_{0_{0}}}, s_{0_{2_{1}}}$

P	--		- -		---	---	---	
$\begin{aligned} & { }^{s_{0} 0_{0}} \\ & { }^{s_{0}} \\ & { }^{s_{0}} \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{ll} 10 & 0 \\ 0 & - \\ 0 & 1 \end{array}$	$\begin{array}{\|l\|} \hline-0- \\ -0- \\ -0- \end{array}$	$\left\|\begin{array}{l} --- \\ -0- \\ -0- \end{array}\right\|$	0--	$0--$	$\begin{aligned} & 0-- \\ & -0- \\ & -0- \end{aligned}$	$\left\lvert\, \begin{aligned} & 0-- \\ & -0- \\ & -0- \end{aligned}\right.$
$\begin{aligned} & s_{10} \\ & s_{1} \\ & s_{1} \\ & s_{1} \end{aligned}$	$\begin{array}{llll} \hline 1 & 0 & 0 \\ 0 & - & - \\ 0 & 1 & 0 \end{array}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & -0- \\ & -0- \\ & -0- \end{aligned}$	$\left\lvert\, \begin{aligned} & -0- \\ & -0- \end{aligned}\right.$	$\begin{aligned} & 0-- \\ & --- \\ & --- \end{aligned}$		$\begin{aligned} & 0-- \\ & -0- \\ & -0- \end{aligned}$	$\left\lvert\, \begin{aligned} & 0-- \\ & -0- \\ & -0- \end{aligned}\right.$
$\begin{aligned} & s_{2_{0}} \\ & s_{2} \\ & s_{2} \end{aligned}$	000	$\begin{array}{lll} - & - \\ 0 & 0 & 0 \end{array}$	$\begin{array}{llll} 1 & \circ & \circ \\ \circ & \circ & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{gathered} 000 \\ -\quad 0 \end{gathered}$	$\begin{array}{llll} 0 & - & - \\ 0 & 0 & 0 \end{array}$	$\left\|\begin{array}{ccc} 0 & - & - \\ 0 & 0 & 0 \end{array}\right\|$	$\begin{array}{ll} 0 & - \\ 0 & 0 \end{array}$	$\left\|\begin{array}{ccc} 0 & - & - \\ 0 & 0 & 0 \end{array}\right\|$
$\begin{array}{r} s_{3} 3_{0} \\ { }^{s_{3}} \\ s_{3} \\ \hline \end{array}$	$\begin{aligned} & --- \\ & 100 \end{aligned}$	$\begin{array}{lll} - & - & - \\ 1 & 0 & 0 \end{array}$	$\begin{aligned} & -0- \\ & -0- \\ & -00 \end{aligned}$	$\begin{array}{lll} \hline & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	0	0 - 0 0 -	$\begin{aligned} & 0-- \\ & 0-- \end{aligned}$	$\begin{aligned} & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & s_{4} 4_{0} \\ & s_{4} \\ & s_{1} \\ & s_{2} \end{aligned}$			$\begin{aligned} & 00- \\ & -0- \\ & -0- \end{aligned}$	$\begin{gathered} 00 \\ 0 \\ -0- \end{gathered}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$
$\begin{aligned} & { }^{s_{5} 5_{0}} \\ & { }^{s_{5}} \\ & { }^{s_{5}} 2 \\ & \hline \end{aligned}$		0	$\left\lvert\, \begin{gathered} 0 \\ 0 \\ -0- \\ -0 \end{gathered}\right.$	$\begin{aligned} & \hline 00 \\ & \hline \end{aligned} 0_{-}^{0}-1$		$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\left\lvert\, \begin{aligned} & --- \\ & -0- \end{aligned}\right.$
$\begin{aligned} & { }^{s_{6}} 0 \\ & { }^{s_{6}} \\ & s_{6} \end{aligned}$	$\begin{gathered} 0-- \\ -00 \end{gathered}$	0-0--	$\begin{aligned} & 00- \\ & -0- \\ & -0- \end{aligned}$	$00-$	---	--- $-0-$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{array}{l\|} \hline--- \\ --- \\ --0 \end{array}\right.$
$\begin{array}{r} { }^{s} 7_{0} \\ { }^{s} 7_{1} \\ { }^{s} 7_{2} \\ \hline \end{array}$	$\begin{gathered} 0-- \\ -0 \end{gathered}$	$\left\lvert\, \begin{array}{ccc} 0 & - \\ -0 & 0 \end{array}\right.$	$\left\lvert\, \begin{array}{cc} 0 & 0- \\ -0 & - \\ -0 & - \end{array}\right.$	$00-$	---	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}$	$\begin{array}{llll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$

(d) Satisfy $s_{3_{1_{0}}}, s_{3_{1_{4_{2}}}} \rightarrow \neg r_{3_{1_{5}}}$

Figure 81: 2-variable contradiction - pre-decision - stage 1

P			- 0 -	-0-				
$\begin{aligned} & { }^{s_{0} 0_{0}} \\ & { }^{s_{0}} \\ & { }^{s_{0}} \\ & \hline \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{lll} 1 & 0 & 0 \\ 0 & - & - \\ 0 & 1 & 0 \end{array}$	$\begin{aligned} & -0- \\ & -0- \\ & -0- \end{aligned}$	$\begin{aligned} & -0- \\ & -0- \\ & -0- \end{aligned}$		$0--$	$\begin{aligned} & 0-- \\ & -0- \\ & -0- \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \\ & -0- \end{aligned}$
$\begin{array}{r} { }^{s_{1} 1_{0}} \\ { }^{s_{1}} \\ { }^{s_{1}} \\ \hline \end{array}$	$\begin{array}{lll} 1 & 0 & 0 \\ 0 & - & - \\ 0 & 1 & 0 \end{array}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{aligned} & -0- \\ & -0- \\ & -0- \end{aligned}\right.$	$\begin{aligned} & -0- \\ & -0- \\ & -0- \end{aligned}$	$\begin{aligned} & 0-- \\ & --- \\ & -- \end{aligned}$	$1-$	$\left\lvert\, \begin{gathered} 0-- \\ -0- \\ -0- \end{gathered}\right.$	$\begin{aligned} & 0-- \\ & -0- \\ & -0- \end{aligned}$
$\begin{aligned} & s_{2}{ }_{0} \\ & s_{2} \\ & s_{2} \\ & s_{2} \\ & \hline \end{aligned}$	00	$\begin{aligned} & - \\ & 0 \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & \circ & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{ccc} -0 & 0 & - \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\left\|\begin{array}{lll} 0 & - & - \\ 0 & 0 & 0 \\ 0 & - & - \end{array}\right\|$	$\left\|\begin{array}{lll} 0 & 0 & 0 \\ 0 & - & - \end{array}\right\|$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned} 0-$	$\begin{aligned} & 0-- \\ & 0 \\ & 0 \\ & 0 \end{aligned} 0-1$
$\begin{aligned} & { }^{s_{3}}{ }_{0} \\ & { }^{s_{3}} \\ & { }^{s_{3}} \\ & \hline \end{aligned}$	000	000	$\begin{array}{r} 000 \\ -00 \end{array}$	$\begin{array}{lll} \hline 1 & \circ & \circ \\ \circ & \circ & \circ \\ \circ & \circ & 1 \end{array}$	000	000	$\begin{array}{ll} 0 & - \\ 0 & 0 \end{array}$	$\begin{array}{lll} 0 & - & - \\ 0 & 0 & 0 \end{array}$
$\begin{aligned} & { }^{s_{4}}{ }_{0} \\ & { }^{s_{4}} \\ & s_{4} \\ & \hline \end{aligned}$		$\begin{aligned} & 0-- \\ & --- \\ & --- \end{aligned}$	$\begin{aligned} & 000 \\ & -0- \\ & -0- \end{aligned}$	$\begin{gathered} 00- \\ -0- \\ -0- \end{gathered}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & --- \\ & --0 \end{aligned}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	--- $-0-$
$\begin{aligned} & { }^{s_{5}{ }_{0}} \\ & { }^{s_{5}} \\ & { }^{s_{5}} \\ & \hline \end{aligned}$		$\begin{aligned} & 0-- \\ & --- \\ & --- \end{aligned}$	$\begin{array}{ccc} 0 & 0 & 0 \\ -0 & - \\ -0 & - \end{array}$	$\begin{gathered} 00- \\ -0- \\ -0- \end{gathered}$	-0	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	---	--- $-0-$
$\begin{aligned} & s_{6}{ }_{0} \\ & s_{6} \\ & s_{6} \\ & \hline \end{aligned}$	$\begin{aligned} & 0-- \\ & -00 \end{aligned}$	0 -0 -0	$\left\lvert\, \begin{array}{lll} 0 & 0 & 0 \\ -0 & - \\ -0 & - \end{array}\right.$	$\begin{gathered} 0 \\ 0 \\ -0 \end{gathered}-\quad-\quad .$	---	--- $-0-$	$\begin{array}{lll} 1 & 0 & 0 \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}$
$\begin{aligned} & { }^{s} 7_{0} \\ & { }^{s} 7_{1} \\ & { }^{{ }^{{ }_{7}} 2} \\ & \hline \end{aligned}$	$\begin{gathered} 0-- \\ -00 \end{gathered}$	$\begin{array}{cc} 0 & - \\ -0 & - \end{array}$	$\begin{aligned} & 000 \\ & -0- \\ & -0- \end{aligned}$	$\begin{gathered} 00- \\ -0- \\ -0- \end{gathered}$	---	--- $-0-$	$\begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}$	$\begin{array}{lll} 1 & \circ & 0 \\ \circ & 1 & 0 \\ \circ & \circ & 1 \end{array}$

(a) Satisfy $s_{2_{2_{3_{0}}}} \rightarrow \neg r_{x_{0_{2}}}, x=(4,5,6,7)$

P	---		- 0 -	- $0-$	0 -	0 -	001	010
$\begin{aligned} & s_{0_{0}} \\ & s_{0_{1}} \\ & s_{0_{2}} \\ & \hline \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{\|ccc\|} \hline 1 & 0 & 0 \\ 0 & - & - \\ 0 & 1 & 0 \end{array}$	$\left\lvert\, \begin{aligned} & -0- \\ & -0- \\ & -0- \end{aligned}\right.$	$\begin{aligned} & -0- \\ & -0- \\ & -0- \end{aligned}$	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}-$	$\begin{array}{lll} \hline 0 & - & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$
$\begin{aligned} & s_{10} \\ & s_{1} \\ & s_{1} \\ & s_{1} \end{aligned}$	$\begin{array}{lll} 10 & 0 & 0 \\ 0 & - & - \\ 0 & 1 & 0 \end{array}$	$\begin{array}{llll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & -0- \\ & -0- \\ & -0- \end{aligned}$	$\begin{aligned} & -0- \\ & -0- \\ & -0- \end{aligned}$	0	$\begin{aligned} & 0-- \\ & 0-- \end{aligned}$	$\left.\begin{array}{ll} 0 & 0 \end{array}\right]-$	$\begin{array}{llll} 0 & - & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$
$\begin{aligned} & s_{2} 2_{0} \\ & s_{2}{ }_{1} \\ & s_{2} \\ & \hline \end{aligned}$	00	00	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & \circ & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & - & - \end{array}$	$\begin{aligned} & 0-1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{lll} 0 & 0 & - \\ 0 & 0 & 0 \\ 0 & 0 & - \end{array}$	$\begin{array}{lll} 0 & - & 0 \\ 0 & 0 & 0 \\ 0 & -0 \end{array}$
$\begin{aligned} & s_{3} 3_{0} \\ & s_{3} \\ & s_{1} \\ & s_{3} \\ & \hline \end{aligned}$	000	000	$\begin{array}{ccc} -0 & 0 & - \\ 0 & 0 & 0 \\ -0 & 0 \end{array}$	$\begin{array}{lll} \hline 1 & \circ & \circ \\ \circ & \circ & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{lll} 0 & - & - \\ 0 & 0 & 0 \\ 0 & - & - \end{array}$	$\begin{aligned} & \begin{array}{ll} 0 & - \\ 0 & 0 \end{array} \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{lll} 0 & 0 & - \\ 0 & 0 & 0 \\ 0 & 0 & - \end{array}$	$\begin{array}{lll} \hline 0 & -0 \\ 0 & 0 & 0 \\ 0 & -0 \end{array}$
$\begin{aligned} & s_{4_{0}} \\ & s_{4} \\ & s_{1} \\ & s_{4} \\ & \hline \end{aligned}$			$\left\lvert\, \begin{array}{lll} 0 & 0 & 0 \\ - & 0 & - \\ -0 & - \end{array}\right.$	$\begin{aligned} & 000 \\ & -0- \\ & -0- \end{aligned}$	$\left[\begin{array}{lll} 0 & 1 & 0 \\ 0 & \circ & 1 \end{array}\right.$	$\begin{aligned} & 000 \\ & 0-- \\ & 0-0 \end{aligned}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & - \\ 0 & 0 & - \end{array}$	$\begin{array}{cccc} \hline 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & - & 0 \end{array}$
$\begin{aligned} & { }^{s_{5}}{ }_{0} \\ & s_{5} \\ & s_{1} \\ & s_{5} \\ & \hline \end{aligned}$			$\begin{aligned} & 000 \\ & -0- \\ & -0- \end{aligned}$	$\begin{aligned} & 000 \\ & -0- \\ & -0- \end{aligned}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & - & - \\ 0 & - & 0 \end{array}$	$\begin{array}{lll} \hline & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{llll} \hline 0 & 0 & 0 \\ 0 & 0 & - \\ 0 & 0 & - \end{array}$	$\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & - & 0 \end{array}$
$\begin{aligned} & s_{6} 6_{0} \\ & s_{6} \\ & s_{1} \\ & s_{6} \\ & \hline \end{aligned}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} \hline 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} \hline 0 & 0 & 0 \\ 0 & 0 & 0 \\ - & 0 & - \end{array}$	$\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ - & 0 & - \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & - & - \end{array}$	$\begin{array}{lll} \hline 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & - & - \end{array}$	$\begin{array}{lll} \circ & \circ & \circ \\ \circ & \circ & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{ccc} \hline 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & - & 0 \end{array}$
$\begin{aligned} & { }^{{ }^{3}} 7_{0} \\ & { }^{{ }_{7}} 1 \\ & s_{7} \\ & { }^{7}{ }_{2} \end{aligned}$	$\begin{array}{ccc} \hline 0 & 0 & 0 \\ -0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{cccc} \hline 0 & 0 & 0 \\ -0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{gathered} 000 \\ -00- \\ 000 \end{gathered}$	$\begin{array}{lll} 0 & 0 & 0 \\ -0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & - \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & - \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & - \\ 0 & 0 & 0 \end{array}$	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

(c) $\rightarrow \neg r_{0_{i_{7}}}, \neg r_{1_{i_{7}}}, i=(1,2), \neg r_{4_{17}}, \neg r_{5_{1_{7}}}$

P	---	---	-0-	-0-	0--	$0--$	$0--$	$0--$
$\begin{aligned} & { }^{s_{0} 0_{0}} \\ & { }^{s_{0}} \\ & s_{0_{2}} \\ & \hline \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{llll} \hline 1 & 0 & 0 \\ 0 & - & - \\ 0 & 1 & 0 \end{array}$	$\begin{aligned} & -0- \\ & -0- \\ & -0- \end{aligned}$	$\left\lvert\, \begin{aligned} & -0- \\ & -0- \\ & -0- \end{aligned}\right.$	$0--$ $0--$ $0--$	$\begin{aligned} & 0-- \\ & 0-- \end{aligned}$	$\begin{array}{lll} 0 & - & - \\ 0 & 0 & - \\ 0 & 0 & - \end{array}$	
$\begin{aligned} & s_{10} \\ & s_{1} \\ & s_{1} \\ & s_{1} \\ & \hline \end{aligned}$	$\begin{array}{ll} 100 \\ 0 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{lll} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{aligned} & -0- \\ & -0- \\ & -0- \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & -0- \\ & -0- \\ & -0- \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}\right.$	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$	$\begin{array}{ll} 0 & -- \\ 0 & 0 \end{array}-$	
$\begin{aligned} & s_{2}{ }_{0} \\ & s_{2} \\ & s_{2} \\ & \hline \end{aligned}$	00	00	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & \circ & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & - & - \end{array}$	$\begin{aligned} & 000 \\ & 0-- \end{aligned}$	$\begin{aligned} & 0-- \\ & 0 \\ & 0 \end{aligned} 0$	$\begin{array}{lll} 0 & - & - \\ 0 & 0 & 0 \\ 0 & - & - \end{array}$
$\begin{aligned} & s_{3}{ }_{0} \\ & s_{3_{1}} \\ & s_{3} \\ & \hline \end{aligned}$	000	000	$\begin{array}{\|ccc} -0 & - \\ 0 & 0 & 0 \\ -0 & 0 \end{array}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & \circ & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & - & - \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & - \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned} \quad-\quad-$	$\begin{array}{ll} 0 & - \\ 0 & 0 \\ 0 & 0 \\ 0 & - \end{array}$
$\begin{aligned} & s_{4_{0}} \\ & s_{4} \\ & s_{4} \\ & s_{4} \\ & \hline \end{aligned}$			$\left\|\begin{array}{ccc} 0 & 0 & 0 \\ -0 & - \\ -0 & - \end{array}\right\|$	$\begin{array}{ccc} 0 & 0 & 0 \\ -0 & 0 & - \\ -0 & - \end{array}$	$\left\lvert\, \begin{array}{lll} \circ & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}\right.$	$\begin{aligned} & 000 \\ & 0-- \\ & 0-0 \end{aligned}$	$\begin{array}{ll} \hline 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{ll} \hline 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$
$\begin{aligned} & s_{5_{0}} \\ & s_{5} \\ & s_{5} \\ & s_{5} \\ & \hline \end{aligned}$			$\left\lvert\, \begin{array}{ccc} 0 & 0 & 0 \\ -0 & - \\ -0 & - \end{array}\right.$	$\begin{array}{lll} 0 & 0 & 0 \\ - & 0 & - \\ -0 & 0 & - \end{array}$	$\begin{aligned} & 0-- \\ & 0 \end{aligned}$	$\begin{array}{lll} \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{llll} \hline 0 & 0 & 0 \\ 0 & 0 & - \\ 0 & 0 & - \end{array}$	$\begin{array}{lll} \hline 0 & 0 & 0 \\ 0 & 0 & - \\ 0 & -- \end{array}$
$\begin{aligned} & s_{6} 6_{0} \\ & s_{6} \\ & s_{6} \\ & s_{6} \\ & \hline \end{aligned}$	$\begin{array}{r} 000 \\ -00 \end{array}$	$\left[\begin{array}{ccc} 0 & 0 & 0 \\ -0 & 0 & 0 \end{array}\right.$	$\begin{aligned} & 000 \\ & -0- \\ & -0- \end{aligned}$	$\begin{array}{ccc} 0 & 0 & 0 \\ - & 0 & - \\ - & 0 & - \end{array}$	$\left\lvert\, \begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & - & - \end{array}\right.$	$\begin{aligned} & 000 \\ & 0-- \end{aligned}$	$\begin{array}{lll} \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & - & - \\ 0 & - & 0 \end{array}$
$\begin{array}{r} { }^{s} 7_{0} \\ { }^{s} 7_{1} \\ { }^{s} 7_{2} \\ \hline \end{array}$	$\begin{gathered} 000 \\ -000 \end{gathered}$	$\begin{array}{lll} 0 & 0 & 0 \\ -0 & 0 \end{array}$	$\begin{aligned} & 000 \\ & -0- \\ & -0- \end{aligned}$		$\begin{array}{\|lll\|}0 & 0 & 0 \\ 0 & 0 & - \\ 0 & - & -\end{array}$	0 0 0 0 0 - 0 - -	$\begin{aligned} & 000 \\ & 0-- \\ & 0-0 \end{aligned}$	$\begin{array}{lll} \circ & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$

(b) Satisfy $s_{6_{1_{4_{2}}}} \rightarrow \neg r_{6_{15}} \rightarrow \neg r_{7_{2}}$

P	100	100	-0-	- $0-$	001	001	001	010
${ }^{s_{0}}$	100	100	-0-	- 0 -	$00-$	$00-$	$00-$	0-0
$s_{0}{ }_{1}$	\bigcirc	000	000	000	000	000	000	000
$s_{0_{2}}$	$\bigcirc \circ \circ$	000	000	000	000	000	000	000
$s_{1}{ }_{0}$	100	$1 \circ \circ$	-0-	-0	0	$00-$	00-	0-0
$s_{1} 1_{1}$	00	$\bigcirc \circ \circ$	00	0	0	000	0	000
s_{12}	000	$\bigcirc \circ \circ$	000	000	000	000	000	000
${ }^{s_{2}}$	-	-00						
$s_{2}{ }_{1}$	0	0	$\bigcirc \circ \circ$	0	0	0	000	000
$s_{2}{ }_{2}$	-00	-00	$\bigcirc \circ 1$	100	00-	$00-$	00-	0-0
${ }^{s} 3_{0}$	-0	-	-				$00-$	0-0
$s_{3}{ }_{1}$	00	00	000	-	0	000	0	0
$s_{3}{ }_{2}$	-00	-00	-00	$\bigcirc \circ 1$	$00-$	$00-$	$00-$	0-0
$s_{4}{ }_{0}$	00	00	00	000		0	000	0
$s_{4}{ }_{1}$	000	000	000	000		000	000	000
$s_{4}{ }_{2}$	-00	-00	-0-	-0-	- ○ 1	000	00-	0-0
$s_{5}{ }_{0}$	00	0	00					
$s_{5}{ }_{1}$	00	00	000	000	0	-	000	000
s_{5}	-00	-00	-0-	-0-	000	$\bigcirc \circ 1$	00-	0-0
$s_{6} 0$	0	0	00	0	0	0	$\bigcirc \circ \circ$	000
$s_{6}{ }_{1}$	000	000	000	000	000	000	$\bigcirc 00$	000
$s_{6}{ }_{2}$	-00	-00	-0-	-0-	$00-$	$00-$	- ○ 1	0-0
${ }^{s_{7}}$	000	000	000	000	000	000	000	$\bigcirc \circ \circ$
$s_{7}{ }_{1}$	-00	-00	-0-	-0-	$00-$	$00-$	$00-$	- 1 ○
${ }^{7_{7}}$	000	000	000	000	000	000	000	- 0

(d) $\rightarrow \neg r_{5_{2}} \rightarrow \neg c_{5_{4}} \rightarrow \mathrm{CTR}$

Figure 82: 2-variable contradiction - pre-decision - stage 2

D.5. Example: Stepwise conflict detection

Stepwise indirect conflict detection of a 2-variable contradiction polynomially expanded to 3-SAT.

$$
\begin{aligned}
& (\neg p \vee \neg q \vee \neg a) \wedge \\
& (\neg p \vee \neg q \vee a) \wedge \\
& (\neg p \vee q \vee \neg b) \wedge \\
& (\neg p \vee q \vee b) \wedge \\
& (p \vee \neg q \vee \neg c) \wedge \\
& (p \vee \neg q \vee c) \wedge \\
& (p \vee q \vee \neg d) \wedge \\
& \left(\begin{array}{lll}
p \vee & q \vee d)
\end{array}\right.
\end{aligned}
$$

P	---	---	---	---	---	---	---	---	---
$\begin{aligned} & s_{0_{0}} \\ & s_{0} \\ & s_{1} \\ & s_{0_{2}} \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$		$\left\lvert\, \begin{aligned} & --- \\ & -0- \\ & ---\end{aligned}\right.$	$\left\lvert\, \begin{aligned} & --- \\ & -0- \\ & ---\end{aligned}\right.$	$\left\|\begin{array}{c} 0-- \\ --- \end{array}\right\|$	$\begin{aligned} & 0-- \\ & --- \end{aligned}$	$\begin{array}{\|c\|c\|c} \hline 0-- & 0 \\ -0- & - \\ --- & - \end{array}$	$\left\lvert\, \begin{gathered} 0-- \\ -0- \\ --- \end{gathered}\right.$	$\begin{gathered} -0- \\ 0-- \\ 0-- \end{gathered}$
$\begin{aligned} & s_{1_{0}} \\ & s_{1} \\ & s_{1} \\ & s_{12} \end{aligned}$	$\begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$-0-$ $---$		$\left\|\begin{array}{c} 0-- \\ --- \end{array}\right\|$	$\begin{gathered} 0-- \\ --- \end{gathered}$	$\left\lvert\, \begin{gathered} 0-- \\ -0- \\ --- \end{gathered}\right.$	$\left\lvert\, \begin{aligned} & 0-- \\ & -0- \\ & --- \end{aligned}\right.$	$\begin{gathered} \hline 0-- \\ --0 \\ 0-- \\ \hline \end{gathered}$
$\begin{aligned} & s_{2_{0}} \\ & s_{2}{ }_{1} \\ & s_{2}{ }_{2} \\ & \hline \end{aligned}$	$-0-$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$		$\left\lvert\, \begin{gathered} 0-- \\ -0- \\ --- \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 0-- \\ -0- \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 0-- \\ --- \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 0-- \\ --- \end{gathered}\right.$	
$\begin{aligned} & s_{3_{0}} \\ & s_{3_{1}} \\ & s_{3_{2}} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline--- \\ & -0- \end{aligned}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$		$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	($\begin{gathered}0-- \\ -0- \\ ---\end{gathered}$	$\begin{gathered} 0-- \\ -0- \end{gathered}$	$\begin{aligned} & 0-- \\ & --- \end{aligned}$	$\begin{array}{\|c\|} \hline 0-- \\ --- \\ \hline \end{array}$	----
$\begin{aligned} & s_{4_{0}} \\ & s_{4} \\ & s_{1} \\ & s_{4} \\ & \hline \end{aligned}$	$0--$	$\begin{gathered} 0-- \\ --- \end{gathered}$	$\left\|\begin{array}{c} 0-- \\ -0- \\ --- \end{array}\right\|$	$\left\lvert\, \begin{gathered} 0-- \\ -0- \\ --- \end{gathered}\right.$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}$	$\left\lvert\, \begin{aligned} & --- \\ & -0- \\ & --- \end{aligned}\right.$	- 0 - - - -	
$\begin{aligned} & s_{5_{0}} \\ & s_{5} \\ & s_{5} \\ & s_{5} \\ & \hline \end{aligned}$	$\begin{aligned} & 0-- \\ & --- \end{aligned}$	$\begin{gathered} \hline 0-- \\ --- \end{gathered}$	$\left\lvert\, \begin{aligned} & 0-- \\ & -0- \\ & --- \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 0-- \\ & -0- \\ & --- \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}\right.$	$\begin{array}{llll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & --- \\ & -0- \\ & -0- \end{aligned}$	$-0-$ $---$	
$\begin{aligned} & s_{6} 6_{0} \\ & s_{6} \\ & s_{1} \\ & s_{6} \\ & \hline \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \end{aligned}$	$\begin{gathered} 0-- \\ -0-- \end{gathered}$	$\begin{gathered} 0-- \\ --- \end{gathered}$	$\begin{gathered} 0-- \\ --- \end{gathered}$	---	--- $-0-$ ---	$\left\lvert\, \begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}\right.$	$\left\|\begin{array}{l} --- \\ --- \\ --0 \end{array}\right\|$	--- ---
$\begin{aligned} & { }^{{ }^{s} 7_{0}} \\ & { }^{s} 7_{1} \\ & { }^{s_{7}} \\ & \hline \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \end{aligned}$	$\begin{gathered} \hline 0-- \\ -0- \end{gathered}$		$\begin{array}{\|l} \hline 0-- \\ --- \\ --- \end{array}$	$\left\|\begin{array}{l\|} \hline--- \\ -0- \end{array}\right\|$	--- $-0-$		$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	
$\begin{aligned} & s_{8_{0}} \\ & s_{8_{1}} \\ & s_{8_{2}} \\ & \hline \end{aligned}$	$\begin{aligned} & -00 \\ & 0-- \end{aligned}$	$\begin{gathered} 0-0 \\ --- \\ -0- \end{gathered}$				---	---		1 \circ 0 \circ 1 0 \circ \circ 1

(a) Request $s_{8_{0_{0}}}, s_{8_{0_{1_{1}}}}$

P	--	---	---	---	---				
$\begin{aligned} & { }^{s_{0} 0_{0}} \\ & { }^{s_{0}} \\ & { }^{s_{0}} \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$		$\left\|\begin{array}{l} --- \\ -0-- \end{array}\right\|$	$\left\lvert\, \begin{aligned} & --- \\ & -0- \end{aligned}\right.$	$\left\|\begin{array}{c} 0-- \\ --- \end{array}\right\|$	$\left\|\begin{array}{c} 0-- \\ --- \end{array}\right\|$	$\begin{array}{c\|c} 0-- \\ -0- & 0 \end{array}$	$\begin{gathered} \hline 0-- \\ -0- \end{gathered}$	$\begin{aligned} & -0- \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & { }^{s_{1} 1_{0}} \\ & s_{1}{ }_{1} \\ & s_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline--- \\ & 0-- \\ & --0 \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$		$\left\lvert\, \begin{aligned} & --- \\ & -0- \end{aligned}\right.$	$\left\lvert\, \begin{gathered} 0-- \\ --- \end{gathered}\right.$	$\left\|\begin{array}{c} 0-- \\ --- \end{array}\right\|$	$\begin{array}{c\|c} 0-- & 0 \\ -0-0 & \end{array}$	$\begin{gathered} 0-- \\ -0- \end{gathered}$	$\begin{aligned} & --- \\ & 0-- \end{aligned}$
$\begin{aligned} & s_{2}{ }_{0} \\ & s_{2} \\ & s_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\left\lvert\, \begin{aligned} & --- \\ & -0- \end{aligned}\right.$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}\right.$	$\left\|\begin{array}{c} 0-- \\ -0- \end{array}\right\|$	$\begin{gathered} 0-- \\ -0- \end{gathered}$	$\begin{gathered} 0-- \\ --- \end{gathered}$	$\begin{gathered} 0-- \\ --- \end{gathered}$	$\begin{gathered} 0-- \\ --0 \\ 0-- \end{gathered}$
$\begin{aligned} & s_{3_{0}} \\ & s_{3_{1}} \\ & s_{3} \\ & \hline \end{aligned}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	---		$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{gathered} 0-- \\ -0- \\ --- \end{gathered}\right.$	$\begin{gathered} 0-- \\ -0- \end{gathered}$	$\begin{aligned} & 0-- \\ & --- \end{aligned}$	$\begin{gathered} 0-- \\ --- \end{gathered}$	$\begin{aligned} & --- \\ & --- \end{aligned}$
$\begin{aligned} & s_{4_{0}} \\ & s_{4_{1}} \\ & s_{4_{2}} \\ & \hline \end{aligned}$	$0--$	$0--$	$\left\lvert\, \begin{gathered} 0-- \\ -0- \\ --- \end{gathered}\right.$	$\begin{aligned} & 0-- \\ & -0- \\ & --- \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$		$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{aligned} & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & s_{5_{0}} \\ & s_{5} \\ & s_{1} \\ & s_{5} \\ & \hline \end{aligned}$	0	0--	$\left\lvert\, \begin{gathered} 0-- \\ -0- \end{gathered}\right.$	$\begin{gathered} 0-- \\ -0- \end{gathered}$	$\left\lvert\, \begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}\right.$	$\begin{array}{lll} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{aligned} & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & { }^{s_{6}}{ }_{0} \\ & { }^{s_{6}} \\ & s_{6} \\ & \hline \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \end{aligned}$	$\left\|\begin{array}{c} 0-- \\ -0- \end{array}\right\|$		$\begin{gathered} 0-- \\ --- \end{gathered}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	---	$\begin{array}{llll} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}$	$\begin{gathered} 0-- \\ --- \end{gathered}$
$\begin{aligned} & { }^{s} 7_{0} \\ & { }^{s} 7_{1} \\ & { }^{s} 7_{2} \\ & \hline \end{aligned}$	$\begin{gathered} 0-- \\ -0- \end{gathered}$	$\begin{gathered} 0-- \\ -0- \end{gathered}$	$\begin{gathered} 0-- \\ --- \end{gathered}$	$\begin{gathered} 0-- \\ --- \end{gathered}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	---		$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{gathered} 0-- \\ --- \end{gathered}$
$\begin{aligned} & s_{8_{0}} \\ & s_{8_{1}} \\ & s_{8_{2}} \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 0-- \end{aligned}$	$-0-$	$\left\lvert\, \begin{array}{ccc} \hline 0 & 1 & 0 \\ - & - & - \\ -0 & - \end{array}\right.$	- - -	$00-$	$00-$		$\begin{gathered} 0-- \\ --- \end{gathered}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$

(c) Request and satisfy $s_{8_{0_{0}}}, s_{8_{0_{2_{1}}}}$

P	-	---	---					---	0 -
$\begin{aligned} & s_{0_{0}} \\ & s_{0} 0_{1} \\ & s_{0_{2}} \\ & \hline \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{aligned} & \hline-0- \\ & --- \\ & --0 \end{aligned}\right.$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\left\|\begin{array}{c} 0-- \\ --- \end{array}\right\|$	$\begin{gathered} 0-- \\ --- \end{gathered}$	$\left\|\begin{array}{c} 0-- \\ -0- \\ --- \end{array}\right\|$	$0--$ $-0-$ ---	$\begin{aligned} & 001 \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & s_{1}{ }_{0} \\ & s_{1} \\ & s_{1} \\ & s_{1} \end{aligned}$	$\begin{gathered} 0-- \\ --0 \end{gathered}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	--- $-0-$	--- -	$---$	-1	$\begin{gathered} 0-- \\ -0- \end{gathered}$	$\begin{gathered} 0-- \\ -0- \end{gathered}$	$\begin{array}{lll} 0 & - & - \\ 0 & 1 & 0 \\ 0 & - & - \end{array}$
$\begin{aligned} & s_{2_{0}} \\ & s_{21} \\ & s_{2} \end{aligned}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}\right.$	$\begin{gathered} 0-- \\ -0- \end{gathered}$	$\begin{gathered} 0-- \\ -0- \end{gathered}$	$-$	$\begin{aligned} & 0-- \\ & --- \end{aligned}$	$\begin{array}{\|l\|} \hline 0-- \\ 0-- \\ 0-- \\ \hline \end{array}$
$\begin{aligned} & s_{3_{0}} \\ & s_{3} \\ & s_{1} \\ & s_{3} \end{aligned}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}$	$\begin{array}{lll} \hline 1 & \circ & \circ \\ \circ & 1 & 0 \\ \circ & \circ & 1 \end{array}$	$\begin{gathered} 0-- \\ -0- \end{gathered}$	$\begin{gathered} 0-- \\ -0- \end{gathered}$	$0 \text { - - }$	$\begin{gathered} 0-- \\ --- \end{gathered}$	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & s_{4_{0}} \\ & s_{4} \\ & s_{1} \\ & s_{4} \\ & \hline \end{aligned}$	0	0	$\begin{aligned} & 0-- \\ & -0- \end{aligned}$	$\begin{gathered} 0-- \\ -0- \end{gathered}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & --- \\ & --0 \end{aligned}$	$\left\|\begin{array}{l} --- \\ -0- \end{array}\right\|$	--- $-0-$	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & s_{5_{0}} \\ & s_{5} \\ & s_{1} \\ & s_{5} \\ & \hline \end{aligned}$		0	$\left\lvert\, \begin{gathered} 0-- \\ -0- \end{gathered}\right.$	$\begin{gathered} 0-- \\ -0- \end{gathered}$	$\begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}$	$\begin{array}{lll} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$-0-$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & s_{6} 6_{0} \\ & s_{6} \\ & s_{1} \\ & s_{6} \\ & \hline \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \end{aligned}$	$\left\lvert\, \begin{gathered} 0-- \\ -0- \end{gathered}\right.$	$0--$	$0--$	--- $-0-$	--- $-0-$	$\begin{array}{lll} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}$	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & { }^{{ }^{{ }^{7}} 0} 0 \\ & { }^{s} 7_{1} \\ & { }^{s} 7_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \end{aligned}$	$-0-$		0	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{aligned} & --- \\ & --0 \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & \hline 0-- \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & { }^{s_{8} 8_{0}} \\ & s_{8} 8_{1} \\ & s_{8} \end{aligned}$	$\begin{aligned} & 000 \\ & 0 \\ & 0 \end{aligned}$	$\left\lvert\, \begin{array}{lll} 0 & 0 & 0 \\ - & - & - \\ -0 & -0 \end{array}\right.$	000	$\begin{aligned} & 0000 \\ & -\quad-\quad ~ \end{aligned}$	$\begin{array}{lll} 0 & 0 & 0 \\ - & - & - \end{array}$	$\begin{aligned} & 000 \\ & -\quad-\quad-1 \end{aligned}$	$\begin{array}{llll} \hline 0 & 0 & 0 \\ - & - & -1 \end{array}$	000	

(b) Consolidation reveals indirect conflict

(d) Satisfy $s_{8_{0_{4_{2}}}} \rightarrow$ impossible $r_{8_{0_{5}}}$

Figure 83: 2-variable contradiction polynomially expanded to 3 -SAT - stage 1

P	--		--	--	--	---	---		--
$\begin{aligned} & { }^{s_{0}}{ }_{0} \\ & s_{0} \\ & s_{0} 0_{2} \end{aligned}$	$\begin{array}{\|lll\|} \hline 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-0- \\ --- \\ --0 \\ \hline \end{array}$	$\left\|\begin{array}{l\|l\|} \hline-0 & - \\ -0 & - \\ --- \end{array}\right\|$	$\left\|\begin{array}{l} --- \\ -0- \\ --- \end{array}\right\|$	$0--$	$\left\|\begin{array}{c} 0-- \\ --- \end{array}\right\|$	$\left\lvert\, \begin{gathered} 0-- \\ -0- \end{gathered}\right.$	$\left\lvert\, \begin{aligned} & 0-- \\ & -0- \\ & --2 \end{aligned}\right.$	$\begin{array}{\|lll\|} \hline 0 & 0 & 1 \\ 0 & - & - \\ 0 & - & - \\ \hline \end{array}$
$\begin{aligned} & s_{1_{0}} \\ & s_{1} \\ & s_{1} \\ & \hline \end{aligned}$	$\begin{gathered} \hline--- \\ 0-- \\ --0 \end{gathered}$	$\left.\begin{array}{llll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right\rvert\,$	$\left\|\begin{array}{l} --- \\ -0 \\ -0 \end{array}\right\|$	---			$0--$ $-0-$	$0--$ $-0-$	$\begin{aligned} & \hline 0-- \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & \hline s_{2_{0}} \\ & s_{2_{1}} \\ & s_{2} \end{aligned}$	$\begin{array}{\|c\|c\|} \hline- & - \\ \hline 0 & 0 \end{array}$	$\left\|\begin{array}{ccc} -1 & - \\ 1 & 0 & 0 \end{array}\right\|$	$\begin{array}{\|lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}$	$\left\|\begin{array}{l} --- \\ --- \\ --0 \end{array}\right\|$	$\left.\begin{array}{\|l\|l\|} \hline 0 & - \\ 0 & 0 \end{array} \right\rvert\,$	(00--	0-- $0--$	$\begin{array}{\|l\|} \hline 0-- \\ 0-- \end{array}$	$\begin{array}{\|l\|} \hline 0-- \\ 0-0 \\ 0-- \end{array}$
$\begin{aligned} & s_{3_{0}} \\ & s_{3} \\ & s_{3} \end{aligned}$	---	$\left.\begin{array}{\|l\|} \hline--- \\ -0 \end{array} \right\rvert\,$	$\begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}$	$\left.\begin{array}{\|lll\|} \hline 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right\rvert\,$	$\left\lvert\, \begin{aligned} & 0-- \\ & -0- \\ & -- \end{aligned}\right.$	($0--$ $-0-$	0--	$0--$ ---	$\begin{array}{\|l\|} \hline 0-- \\ 0-- \\ 0-- \end{array}$
$\begin{aligned} & s_{s_{0}} \\ & s_{4} \\ & s_{4} \end{aligned}$	0	$0--$	$\left\|\begin{array}{ll} 0 & 0 \end{array}\right\|$	$\left\|\begin{array}{l} 0-- \\ -0- \end{array}\right\|$	$\left.\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right\rvert\,$	$\left\|\begin{array}{l} --- \\ --0 \end{array}\right\|$	---		$\begin{array}{\|l\|} \hline 0-- \\ 0-- \\ 0-- \end{array}$
$\begin{aligned} & s_{5}{ }_{5} \\ & s_{5_{1}} \\ & s_{5} \end{aligned}$	0--	0 --	$\left\|\begin{array}{ll} 0 & 0 \end{array}\right\|$	$\left\|\begin{array}{l} 0-- \\ -0- \end{array}\right\|$	$\left.\begin{array}{\|l\|} \hline--- \\ --- \\ --0 \end{array} \right\rvert\,$	$\left.\begin{array}{\|lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right\rvert\,$	---	--- $-0-$	$\begin{aligned} & \hline 0-- \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & { }^{s_{6}}{ }_{6} \\ & s_{6} \\ & { }^{6} 6_{2} \end{aligned}$	$\left\lvert\, \begin{gathered} 0-- \\ -0- \end{gathered}\right.$	0--	00-	0--	---	---	$\begin{array}{llll} 1 & \circ & 0 \\ \circ & 1 & 0 \\ 0 & \circ & 1 \end{array}$	$\left\|\begin{array}{l} -- \\ --0 \\ --0 \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}\right.$
$\begin{aligned} & { }^{s_{7}}{ }^{7_{1}} \\ & s_{1} \end{aligned}$	$\begin{array}{c\|} \hline 0-- \\ -0- \end{array}$	$\left.\begin{array}{\|l\|} \hline 0-- \\ -0- \end{array} \right\rvert\,$	$00-$	0	--	--	$-$	$\begin{array}{llll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & s_{8_{0}} \\ & s_{8} \\ & s_{8} \end{aligned}$	$\begin{array}{lll} \hline 0 & 0 & 0 \\ 0 & - & -1 \end{array}$	000	$\begin{array}{ll} \hline 000 \\ --0- \\ -0 & - \\ \hline \end{array}$	000	000	000	000	000	$\begin{array}{\|lll\|} \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \hline \end{array}$

(a) Satisfy $s_{2_{1_{0_{2}}}}, s_{2_{1_{1}}}, s_{2_{1_{4_{2}}}} \rightarrow \neg r_{2_{1_{5}}}$

P	--	---	$0-$		$0--$			---	0--
$\begin{aligned} & { }^{s_{0} 0_{0}} \\ & s_{0} 0_{1} \\ & s_{0_{2}} \\ & \hline \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & -0- \\ & --- \\ & --0 \end{aligned}$	$\begin{aligned} & -0- \\ & -0- \\ & -0- \end{aligned}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{array}{\|l\|} \hline 0-- \\ 0-- \\ 0-- \end{array}$	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$	$\left\lvert\, \begin{aligned} & 0-- \\ & -0- \end{aligned}\right.$	$\begin{array}{\|c\|} \hline 0-- \\ -0- \end{array}$	$\begin{aligned} & 001 \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & { }^{s_{1} 1_{0}} \\ & s_{1} \\ & { }_{1} \\ & s_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & --- \\ & 0-- \\ & --0 \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & -0- \\ & -0- \\ & -0- \end{aligned}$	--- $-0-$	$\begin{aligned} & 0-- \\ & 0-- \end{aligned}$	-1	$\left\lvert\, \begin{aligned} & 0-- \\ & -0- \end{aligned}\right.$	$\begin{array}{\|c\|} \hline 0-- \\ -0- \end{array}$	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & s_{2_{0}} \\ & s_{2}{ }_{1} \\ & s_{2_{2}} \end{aligned}$	000	000	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & \circ & \circ \\ \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{array}{ccc} 0 & 0 & 0 \\ - & - & 0 \end{array}\right.$	$\begin{array}{ccc} 0 & 0 & 0 \\ 0 & - & - \end{array}$	$\begin{array}{ll} 0 & -- \\ 0 & 0 \end{array}$	$\begin{array}{lll} 0 & - & - \\ 0 & 0 & 0 \end{array}$	$\begin{array}{\|lll\|} \hline 0 & - & - \\ 0 & 0 & 0 \end{array}$	$\begin{array}{ll} 0 & -- \\ 0 & 0 \\ 0 & 0 \\ 0 & - \end{array}$
$\begin{aligned} & s_{3_{0}} \\ & s_{3} \\ & s_{1} \\ & s_{3} \\ & \hline \end{aligned}$	$\begin{aligned} & -1 \\ & -1 \end{aligned}$	-0	$\left\lvert\, \begin{aligned} & -0- \\ & -0 \\ & -0 \end{aligned}\right.$	$\left\|\begin{array}{lll} 1 & 0 & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}\right\|$	$\left.\begin{array}{ll} 0 & 0 \\ 0 & - \end{array} \right\rvert\,$	$\begin{gathered} 0-- \\ -0- \\ 0-- \end{gathered}$	$0--$ --- ---		$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & s_{4_{0}} \\ & s_{4} \\ & s_{1} \\ & s_{4} \\ & \hline \end{aligned}$			$\begin{gathered} 000 \\ -0 \\ -0 \end{gathered}$	00ccor	$\left.\begin{array}{lll} \circ & 1 & \circ \\ \circ & \circ & 1 \end{array} \right\rvert\,$	0 0 0 0 - - - - 0	0000	$\begin{gathered}0 \\ 0 \\ -0\end{gathered} 0-1$	$\begin{aligned} & 000 \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & s_{5_{0}} \\ & s_{5_{1}} \\ & s_{5_{2}} \end{aligned}$			$\begin{aligned} & 001 \\ & -0- \\ & -0- \end{aligned}$	$\begin{array}{ccc} 0 & 1 & 0 \\ - & 0 & - \end{array}$	$\begin{aligned} & 0-- \\ & 0-0 \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	--	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & s_{6} 6_{0} \\ & s_{6} \\ & s_{6} \\ & \hline \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \end{aligned}$	$\left\lvert\, \begin{gathered} 0-- \\ -0- \end{gathered}\right.$	$\begin{aligned} & 00- \\ & -0- \\ & -0- \end{aligned}$	\|--	$\begin{array}{ll} 0 & 0 \\ 0 & - \\ 0 \end{array}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{array}{llll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}$	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & { }^{s} 7_{0} \\ & { }^{5} 7_{1} \\ & { }^{s} 7_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \end{aligned}$	$\left\|\begin{array}{l} 0 \end{array}\right\|-$	-1	$\begin{array}{ll} 0 & - \\ 0 & 0 \end{array}-$	--- -	-0	$\left[\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}\right.$	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & s_{8_{0}} \\ & s_{8_{1}} \\ & s_{8_{2}} \\ & \hline \end{aligned}$	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ \hline \end{array}$	000	$\begin{aligned} & 000 \\ & -0- \\ & -0- \end{aligned}$	000	$\left\|\begin{array}{lll} 0 & 0 & 0 \\ 0 & - & - \\ 0 & - & - \end{array}\right\|$	000	000	000	$\begin{array}{lll} \circ & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$

(c) Satisfy $s_{5_{0_{2_{2}}}}, s_{5_{0_{4_{1}}}}, s_{5_{0_{2_{2}}}} \rightarrow \neg r_{5_{0}}$

P	-	---	- 0 -	---			---	- -	0
$\begin{aligned} & s_{0_{0}} \\ & s_{0} \\ & s_{0} \\ & s_{0_{2}} \\ & \hline \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{aligned} & -0- \\ & --- \\ & --0 \end{aligned}\right.$	$\begin{aligned} & -0- \\ & -0- \\ & -0- \end{aligned}$	$-0-$	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$	$\begin{aligned} & \hline 0-- \\ & --- \end{aligned}$	$\begin{gathered} 0-- \\ -0- \end{gathered}$	0--	$\left\lvert\, \begin{array}{lll} 0 & 0 & 1 \\ 0 & - & - \\ 0 & - & - \end{array}\right.$
$\begin{aligned} & s_{1_{0}} \\ & s_{1} 1_{1} \\ & s_{1} \\ & \hline \end{aligned}$	$\begin{gathered} -- \\ 0-- \\ --0 \end{gathered}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & 0 \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & -0- \\ & -0- \\ & -0- \end{aligned}$	--- $-0-$	$0--$	_	$\begin{gathered} 0-- \\ -0- \end{gathered}$	$\left.\begin{array}{\|c\|} \hline 0-- \\ -0- \end{array} \right\rvert\,$	$\begin{array}{\|l\|} \hline 0-- \\ 0-- \\ 0-- \end{array}$
$\begin{aligned} & s_{2_{0}} \\ & s_{2} \\ & s_{2} \end{aligned}$	000	000	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & \circ & \circ \\ \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{array}{ccc} - & - & - \\ 0 & 0 & 0 \\ - & - & 0 \end{array}\right.$	$\begin{aligned} & 0-- \\ & 000 \\ & ---- \end{aligned}$	$\begin{array}{lll} 0 & - \\ 0 & 0 \end{array}$	$\begin{aligned} & 0-- \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0-- \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{\|lll\|} \hline 0 & - & - \\ 0 & 0 & 0 \\ 0 & - & - \\ \hline \end{array}$
$\begin{aligned} & { }^{s_{3} 3_{0}} \\ & { }^{s_{3}} \\ & s_{3} \end{aligned}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\begin{aligned} & -0- \\ & -0 \\ & -0 \end{aligned}$	$\begin{array}{lll} \hline 1 & \circ & \circ \\ \circ & 1 & 0 \\ \circ & \circ & 1 \end{array}$	$\begin{array}{\|c\|} \hline 0-- \\ -0- \\ 0-- \end{array}$	$\left\lvert\, \begin{gathered} 0-- \\ -0- \end{gathered}\right.$	$0--$	$\left\lvert\, \begin{gathered} 0-- \\ --- \end{gathered}\right.$	$\left\lvert\, \begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}\right.$
$\begin{aligned} & s_{4_{0}} \\ & s_{4_{1}} \\ & s_{4_{2}} \\ & \hline \end{aligned}$	000	0	$\begin{aligned} & 001 \\ & -0- \\ & -0- \end{aligned}$	$\left\lvert\, \begin{array}{ccc} 0 & 1 & 0 \\ - & 0 & - \\ - & - & - \end{array}\right.$	$\begin{array}{llll} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{aligned} & -0- \\ & --- \\ & --0 \end{aligned}\right.$	--- $-0-$	---	$\left\lvert\, \begin{aligned} & 0-- \\ & 0-- \\ & 0--- \end{aligned}\right.$
$\begin{aligned} & s_{5_{0}} \\ & s_{5} \\ & s_{1} \\ & s_{5} \\ & \hline \end{aligned}$		$\mid 0$	$\left\|\begin{array}{l} 0 \end{array}\right\| \begin{gathered} - \\ -0 \\ -0 \end{gathered}$	$\begin{aligned} & 0-- \\ & -0- \\ & --- \end{aligned}$	$\begin{gathered} 0-- \\ --0 \end{gathered}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	$\left\|\begin{array}{l} --- \\ -0- \end{array}\right\|$	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & { }^{s_{6}} 0 \\ & s_{6} \\ & s_{1} \\ & s_{6} \\ & \hline \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \end{aligned}$	$\left\lvert\, \begin{gathered} 0-- \\ -0- \end{gathered}\right.$	$\begin{aligned} & 00- \\ & -0- \\ & -0- \end{aligned}$	$\left\lvert\, \begin{gathered} 0-- \\ --- \end{gathered}\right.$	---	---	$\begin{array}{lll} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}\right.$
$\begin{aligned} & { }^{s^{7_{0}}} \\ & { }^{{ }^{7} 1} 1 \\ & { }^{s_{7}} \\ & \hline \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \end{aligned}$	$\left\lvert\, \begin{aligned} & 0-- \\ & -0- \end{aligned}\right.$	$\begin{aligned} & 00- \\ & -0- \\ & -0- \end{aligned}$	0 --	---	$\text { - } 0 \text { - }$	$\begin{aligned} & --- \\ & --0 \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}\right.$
$\begin{aligned} & { }^{s_{8} 8_{0}} \\ & { }^{s_{1}} \\ & s_{8_{2}} \end{aligned}$	000 0	$\begin{aligned} & 000 \\ & --- \end{aligned}$	$\begin{aligned} & 000 \\ & -0- \\ & -0- \end{aligned}$	$\left\lvert\, \begin{array}{c\|c} 00 & 0 \\ -\quad-\quad \end{array}\right.$	$\left\|\begin{array}{ccc} 0 & 0 & 0 \\ - & - & - \end{array}\right\|$	000	000	000	○- $\circ \cdot 0$

(b) Satisfy $s_{4_{0_{2_{2}}}}, s_{4_{0_{4_{1}}}}, s_{4_{0_{2_{2}}}} \rightarrow \neg r_{4_{0_{0}}}$

P	---	---	- 0 -	---	0--	0--	---	---	0--
$\begin{aligned} & s_{0_{0}} \\ & s_{0_{1}} \\ & s_{0_{2}} \\ & \hline \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{aligned} & -0- \\ & --- \\ & --0 \end{aligned}\right.$	$\begin{array}{\|l\|} \hline-0- \\ -0- \\ -0- \\ \hline \end{array}$		$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$		$\begin{gathered} 0-- \\ -0- \end{gathered}$	$\left\lvert\, \begin{aligned} & 0-- \\ & -0- \\ & --- \end{aligned}\right.$	$\begin{aligned} & 001 \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & s_{1}{ }_{0} \\ & s_{1}{ }_{1} \\ & s_{1} \\ & \hline \end{aligned}$	$\begin{gathered} -- \\ 0-- \\ --0 \end{gathered}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{\|l\|} \hline-0- \\ -0- \\ -0- \end{array}$	$\left\|\begin{array}{\|l\|} \hline--- \\ -0- \end{array}\right\|$		$\left.\begin{array}{\|l\|} \hline 0-- \\ 0-- \\ 0-- \end{array} \right\rvert\,$	$\begin{gathered} 0-- \\ -0- \end{gathered}$	$\left\lvert\, \begin{aligned} & 0-- \\ & -0- \\ & - \end{aligned}\right.$	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & s_{2} 2_{0} \\ & s_{2}{ }_{1} \\ & s_{2}{ }_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & --- \\ & 00 \end{aligned}$	$\begin{array}{ccc} - & - & - \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & \circ & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{ccc} - & - & - \\ 0 & 0 & 0 \\ - & -0 \end{array}$	$\begin{array}{lll} 0 & - & - \\ 0 & 0 & 0 \\ 0 & - & - \end{array}$	$\left.\begin{array}{lll} 0 & - & - \\ 0 & 0 & 0 \\ 0 & - & - \end{array} \right\rvert\,$	$\begin{array}{lll} 0 & - & - \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & - & - \\ 0 & 0 & 0 \end{array}$	$\begin{aligned} & 0-- \\ & 0 \\ & 0 \end{aligned} 0$
$\begin{aligned} & s_{3_{0}} \\ & s_{3} \\ & s_{1} \\ & s_{3} \\ & \hline \end{aligned}$	$\begin{aligned} & --- \\ & -0- \end{aligned}$	---	$\begin{aligned} & -0- \\ & -0- \\ & -00 \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{lll} 0 & - & - \\ 0 & 0 & 0 \\ 0 & - & - \end{array}$	$\begin{array}{ll} 0 & - \\ 0 & 0 \\ 0 & 1 \\ 0 & - \end{array}$	$0--$	$\begin{gathered} 0-- \\ --- \end{gathered}$	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & s_{4_{0}} \\ & s_{4}{ }_{1} \\ & s_{4_{2}} \\ & \hline \end{aligned}$	000	$\begin{array}{\|c\|c\|} \hline 000 \\ -\quad-\quad \end{array}$	$\left\lvert\, \begin{array}{ccc} 0 & 0 & 0 \\ -0 & - \\ -0 & - \end{array}\right.$	$\left\|\begin{array}{ccc} 0 & 0 & 0 \\ -0 & 0 & - \\ -0 & - \end{array}\right\|$	$\left\lvert\, \begin{array}{lll} \circ & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}\right.$	$\begin{array}{lll} \hline 0 & 0 & 0 \\ 0 & - & - \\ 0 & - & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ -0 & 0 & - \\ - & - & - \end{array}$	$\begin{array}{ccc} 0 & 0 & 0 \\ -0 & - \end{array}$	$\begin{aligned} & 000 \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & { }^{s_{5}}{ }_{0} \\ & s_{5} 5_{1} \\ & s_{5} \\ & \hline \end{aligned}$	000	$\begin{gathered} 000 \\ --- \end{gathered}$	$\begin{aligned} & 000 \\ & -0- \\ & -0- \end{aligned}$	- $\begin{gathered}0\end{gathered} 0000$	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & - \\ 0 \end{array}$	$\begin{array}{lll} \circ & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	000 -0	0000	$\begin{aligned} & 000 \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & s_{6} 6_{0} \\ & s_{6} \\ & s_{1} \\ & s_{6} \\ & \hline \end{aligned}$	$\begin{gathered} 0-- \\ -0- \end{gathered}$	$\begin{aligned} & 0-- \\ & -0- \end{aligned}$	$\left\lvert\, \begin{array}{cc} 0 & 0- \\ -0 & - \\ -0 & - \end{array}\right.$	$\begin{gathered} 0-- \\ --- \end{gathered}$		$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & - \\ 0 & -- \end{array}$	$\begin{array}{llll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}\right.$	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & { }^{s} 7_{0} \\ & { }^{s} 7_{1} \\ & { }^{{ }_{7}} 2 \\ & \hline \end{aligned}$	$\begin{gathered} 0-- \\ -0- \end{gathered}$	$\begin{gathered} 0-- \\ -0- \end{gathered}$	$\begin{aligned} & 00- \\ & -0- \\ & -0- \end{aligned}$	$\begin{gathered} 0-- \\ --- \end{gathered}$	$\begin{array}{\|lll} \hline 0 & -- \\ 0 & 0 & - \\ 0 & -- \end{array}$	$\begin{array}{ll} 0 & - \\ 0 & 0 \\ 0 & - \\ 0 & - \end{array}$	$\begin{aligned} & --- \\ & --- \\ & --0 \end{aligned}$	$\begin{array}{llll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & { }^{s_{8} 8_{0}} \\ & s_{8}{ }_{1} \\ & s_{8} \end{aligned}$	$\begin{array}{lll} \hline 00 & 0 \\ 0 & - & - \end{array}$	$\begin{array}{\|c\|c\|} \hline 000 \\ -\quad-\quad \end{array}$	$\begin{array}{ccc} 0 & 0 & 0 \\ -0 & 0 & - \\ - & 0 & - \end{array}$	$\begin{aligned} & \hline 000 \\ & --- \end{aligned}$	$\begin{aligned} & \hline 000 \\ & 0-- \\ & 0-- \end{aligned}$	$\begin{aligned} & \hline 000 \\ & 0-- \\ & 0-- \end{aligned}$	000	$\begin{aligned} & 000 \\ & --- \end{aligned}$	\circ 0 0 \circ 1 0 \circ \circ 1

(d) Satisfy $s_{3_{1_{5}}} \rightarrow$ impossible $r_{3_{1_{4}}}$

Figure 84: 2-variable contradiction polynomially expanded to 3-SAT - stage 2

P	---	---	- $0-$	- 0 -	$0--$	0--	---	--	0--
$\begin{aligned} & s_{0_{0}} \\ & s_{0_{1}} \\ & s_{0_{2}} \\ & \hline \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{aligned} & -0- \\ & --- \\ & --0 \end{aligned}\right.$	$\begin{aligned} & -0- \\ & -0- \\ & -0- \end{aligned}$	$\left\|\begin{array}{l} -0 \\ -0 \\ -0 \\ -0 \end{array}\right\|$	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$	$\begin{array}{\|l\|} \hline 0-- \\ 0--- \\ 0-- \end{array}$		$\left\lvert\, \begin{gathered} 0-- \\ -0- \\ --- \end{gathered}\right.$	$\begin{array}{lll} \hline 0 & 0 & 1 \\ 0 & - & - \\ 0 & - & - \end{array}$
$\begin{aligned} & { }^{s_{1} 1_{0}} \\ & s_{1} \\ & s_{1} \end{aligned}$	$\begin{gathered} 0-- \\ --0 \end{gathered}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{aligned} & -0- \\ & -0- \\ & -0- \end{aligned}\right.$	$\left\|\begin{array}{l} -0- \\ -0- \\ -0- \end{array}\right\|$	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \\ & \hline \end{aligned}$		$\left\lvert\, \begin{aligned} & 0-- \\ & -0- \\ & --- \end{aligned}\right.$	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & s_{2}{ }_{2} \\ & s_{2} \\ & s_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & --- \\ & 000 \\ & --- \end{aligned}$	$\left\lvert\, \begin{array}{ccc} - & - & - \\ 0 & 0 & 0 \\ - & - & - \end{array}\right.$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & \circ & \circ \\ \circ & \circ & 1 \end{array}$	$\left\|\begin{array}{ccc} -0 & 0 & - \\ 0 & 0 & 0 \\ -0 & 0 \end{array}\right\|$	$\begin{array}{lll} \hline 0 & - & - \\ 0 & 0 & 0 \\ 0 & - & - \end{array}$	$\begin{array}{llll} \hline 0 & - & - \\ 0 & 0 & 0 \\ 0 & - & - \end{array}$	$\left\lvert\, \begin{array}{lll} \hline 0 & - & - \\ 0 & 0 & 0 \\ - & - & - \end{array}\right.$	$\begin{array}{\|lll} \hline 0 & - & - \\ 0 & 0 & 0 \\ - & - \end{array}$	$\begin{aligned} & 0-- \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
$\begin{aligned} & s_{3_{0}} \\ & { }^{s_{3}} \\ & s_{3}{ }_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & --- \\ & 000 \end{aligned}$	----	$\begin{array}{ccc} -0 & 0 & - \\ 0 & 0 & 0 \\ -0 & 0 \end{array}$	$\begin{array}{llll} 1 & \circ & \circ \\ \circ & \circ & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{lll} 0 & - & - \\ 0 & 0 & 0 \\ 0 & - & - \end{array}$	$\begin{array}{\|lll\|} \hline 0 & - & - \\ 0 & 0 & 0 \\ 0 & - & - \\ \hline \end{array}$	$\left\|\begin{array}{ccc} 0 & - & - \\ 0 & 0 & 0 \\ - & - & - \end{array}\right\|$	$\begin{array}{ll} 0 & - \\ 0 & 0 \\ -1 \end{array}$	$\begin{array}{ll} 0 & -- \\ 0 & 0 \\ 0 & 0 \end{array}$
$\begin{aligned} & s_{4_{0}} \\ & s_{4} \\ & s_{4} \\ & s_{4} \\ & \hline \end{aligned}$	$\begin{aligned} & 000 \\ & --- \\ & --- \end{aligned}$	$\begin{gathered} 000 \\ ----1 \end{gathered}$	$\begin{aligned} & 000 \\ & -0- \\ & -0- \end{aligned}$	$\left\|\begin{array}{ccc} 0 & 0 & 0 \\ -0 & - \\ -0 & - \end{array}\right\|$	$\begin{array}{lll} \circ & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{llll} \hline 0 & 0 & 0 \\ 0 & - & - \\ 0 & - & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ -0 & 0 & - \\ -0 & - \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ - & 0 & - \\ - & - \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & - & - \\ 0 & - & - \end{array}$
$\begin{aligned} & s_{5_{0}} \\ & s_{5_{1}} \\ & s_{5} \\ & \hline \end{aligned}$	000	$\left\lvert\, \begin{array}{ccc} 0 & 0 & 0 \\ - & - & - \\ \hline \end{array}\right.$	$\begin{aligned} & 000 \\ & -0- \\ & -0- \end{aligned}$	$\left\lvert\, \begin{array}{ccc} 0 & 0 & 0 \\ -0 & - \\ -0 & - \end{array}\right.$	$\begin{array}{lll} \hline 0 & 0 & 0 \\ 0 & - & - \\ 0 & - & 0 \end{array}$	$\left\lvert\, \begin{array}{lll} \circ & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}\right.$	00 -0	0000	$\begin{array}{lll} \hline 0 & 0 & 0 \\ 0 & - & - \\ 0 & - & - \end{array}$
$\begin{aligned} & s_{6}{ }_{6} \\ & s_{6} \\ & s_{6} \\ & s_{6} \\ & \hline \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \end{aligned}$	$\begin{gathered} 0-- \\ -0- \end{gathered}$	$\begin{aligned} & 00- \\ & -0- \\ & -0- \end{aligned}$	$\begin{gathered} 00- \\ -0- \\ -0- \end{gathered}$	$\begin{array}{lll} 0 & - & - \\ 0 & 0 & 0 \\ 0 & - & - \end{array}$	$\begin{array}{lll} 0 & - & - \\ 0 & 0 & 1 \\ 0 & - & - \end{array}$	$\begin{array}{lll} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{\|l} \hline--- \\ --- \\ --0 \end{array}$	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & { }^{s} 7_{0} \\ & s_{7} \\ & { }^{s_{1}} \\ & \hline \end{aligned}$	$\begin{gathered} 0-- \\ -0- \end{gathered}$	$\begin{gathered} 0-- \\ -0- \end{gathered}$	$\begin{aligned} & 00- \\ & -0- \\ & -0- \end{aligned}$	$\left\lvert\, \begin{gathered} 0 \\ 0 \\ -0 \\ -0- \\ -0 \end{gathered}\right.$				$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & s_{8_{0}} \\ & s_{8_{1}} \\ & s_{8_{2}} \\ & \hline \end{aligned}$	$\begin{array}{ll} \hline 000 \\ 0 & - \end{array}$	$\begin{array}{\|ccc\|} \hline 0 & 0 & 0 \\ - & - & - \\ \hline \end{array}$	$\left\|\begin{array}{ccc} \hline 0 & 0 & 0 \\ - & 0 & - \\ - & 0 & - \end{array}\right\|$	$\left\|\begin{array}{ccc} 0 & 0 & 0 \\ -0 & - \\ -0 & - \end{array}\right\|$	$\begin{array}{\|ccc\|} \hline 0 & 0 & 0 \\ 0 & - & - \\ 0 & - & - \\ \hline \end{array}$	$\begin{array}{\|lll\|} \hline 0 & 0 & 0 \\ 0 & - & - \\ 0 & - & - \\ \hline \end{array}$	$\begin{gathered} 000 \\ ---- \\ ---- \end{gathered}$	$\begin{array}{\|ll\|} \hline 0 & 0 \end{array}$	

(a) Satisfy $s_{6_{1_{5_{2}}}} \rightarrow$ impossible $r_{6_{1_{4}}}$

P	---	---	-0-	-0-	0--	0--	001	--0	0--
$\begin{aligned} & { }^{s_{0} 0_{0}} \\ & { }^{s_{0}} \\ & s_{0}{ }^{0_{2}} \\ & \hline \end{aligned}$	$\begin{array}{llll} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{\|l\|} \hline-0- \\ --- \\ --0 \end{array}$	$\left\lvert\, \begin{array}{l\|} \hline-0- \\ -0- \\ -0- \end{array}\right.$	$\begin{aligned} & -0- \\ & -0- \\ & -0- \end{aligned}$	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$	$\begin{array}{\|l\|} \hline 0-- \\ 0-- \\ 0-- \end{array}$	$\begin{array}{\|lll\|} \hline 0 & 0 & - \\ 0 & 0 & - \\ 0 & 0 & - \\ \hline \end{array}$	$\begin{array}{\|cc\|} \hline 0-0 \\ -0 & 0 \\ -\quad-0 \end{array}$	$\begin{array}{ll} \hline 0 & 0 \\ 0 & 1 \\ 0 & - \\ 0 & - \end{array}$
$\begin{aligned} & { }^{s_{1} 1_{0}} \\ & { }^{s_{1}} \\ & s_{1} \end{aligned}$	$\begin{gathered} 0-- \\ --0 \end{gathered}$	$\begin{array}{\|llll} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \\ \hline \end{array}$	$\left\|\begin{array}{l} -0- \\ -0- \\ -0- \end{array}\right\|$	$\left\lvert\, \begin{aligned} & -0- \\ & -0- \\ & -0- \end{aligned}\right.$	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$	$\begin{array}{lll} \hline 0 & 0 & - \\ 0 & 0 & - \\ 0 & 0 & - \end{array}$	$\left\lvert\, \begin{array}{cc} 0-0 \\ -0 & 0 \\ --0 \end{array}\right.$	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & s_{2}{ }_{0} \\ & s_{2} \\ & s_{2} \\ & \hline \end{aligned}$	$\begin{array}{ll} --- \\ 0 & 0 \end{array}$	$\begin{array}{lll} - & - & - \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & \circ & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{ccc} -0 & 0 & - \\ 0 & 0 & 0 \\ -0 & 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned} 0-$	$\begin{array}{ll} 0 & - \\ 0 & - \\ 0 & 0 \\ 0 & - \\ 0 & - \end{array}$	$\begin{array}{llll} \hline 0 & 0 & - \\ 0 & 0 & 0 \\ 0 & 0 & - \end{array}$	$\begin{array}{lll} 0 & - & 0 \\ 0 & 0 & 0 \\ - & - & 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}--$
$\begin{array}{r} s_{3_{0}} \\ s_{3} \\ s_{3} \\ s_{3} \\ \hline \end{array}$	---	--- 0	$\begin{array}{ccc} -0 & 0 & - \\ 0 & 0 & 0 \\ -0 & 0 \end{array}$	$\begin{array}{llll} 1 & \circ & \circ \\ \circ & \circ & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{ll} 0 & - \\ 0 & 0 \\ 0 & 0 \\ 0 & - \end{array}$	$\begin{array}{\|lll\|} \hline 0 & - & - \\ 0 & 0 & 0 \\ 0 & - & - \end{array}$	$\begin{array}{lll} 0 & 0 & - \\ 0 & 0 & 0 \\ 0 & 0 & - \end{array}$	$\begin{array}{ccc} 0 & -0 \\ 0 & 0 & 0 \\ - & -0 \end{array}$	$\begin{array}{ll} 0 & -- \\ 0 & 0 \\ 0 & 0 \end{array}$
$\begin{aligned} & s_{4_{0}} \\ & s_{4} \\ & s_{4} \\ & s_{4} \\ & \hline \end{aligned}$	$\begin{gathered} 000 \\ --- \end{gathered}$	$\begin{array}{\|cc\|} \hline 0 & 0 \\ -1 & 0 \\ \hline \end{array}$	$\begin{gathered} 000 \\ -0- \\ -0- \end{gathered}$	$\begin{gathered} 000 \\ -0- \\ -0- \end{gathered}$	$\begin{array}{lll} \circ & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{\|llll} \hline 0 & 0 & 0 \\ 0 & - & - & - \\ 0 & - & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & - \\ 0 & 0 & - \end{array}$	$\begin{array}{ccc} 0 & 0 & 0 \\ -0 & 0 \\ -0 & 0 \end{array}$	$\begin{aligned} & 000 \\ & 0 \\ & 0 \\ & 0 \end{aligned}--$
$\begin{aligned} & s_{5_{0}} \\ & s_{5} \\ & s_{1} \\ & s_{5} \\ & \hline \end{aligned}$		0000	$\left\lvert\, \begin{array}{ccc} 0 & 0 & 0 \\ - & 0 & - \\ - & 0 & - \end{array}\right.$	$\left\lvert\, \begin{array}{ccc} 0 & 0 & 0 \\ - & 0 & - \\ - & 0 & - \end{array}\right.$	$\begin{aligned} & 000 \\ & 0-- \\ & 0-0 \end{aligned}$	$\begin{array}{lll} \circ & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{llll} \hline 0 & 0 & 0 \\ 0 & 0 & - \\ 0 & 0 & - \end{array}$	$\left\lvert\, \begin{array}{ccc} 0 & 0 & 0 \\ - & 0 & 0 \\ - & - & 0 \end{array}\right.$	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & - \\ 0 & -- \end{array}$
$\begin{aligned} & s_{6}{ }_{6} \\ & s_{6} \\ & s_{6} \\ & s_{6} \\ & \hline \end{aligned}$	$\begin{array}{llll} \hline 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{llll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}$	$\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ - & 0 & - \end{array}$	$\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ - & 0 & - \end{array}$	$\begin{array}{lll} \hline 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & - & - \end{array}$	$\left\lvert\, \begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & - & - \end{array}\right.$	$\begin{array}{llll} \circ & \circ & \circ \\ \circ & \circ & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ - & - & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & - & - \end{array}$
$\begin{aligned} & { }^{s} 7_{0} \\ & { }^{s} 7_{1} \\ & { }^{s} 7_{2} \\ & \hline \end{aligned}$	$\begin{gathered} 0-- \\ -0- \\ 000 \end{gathered}$	$\begin{array}{ccc} 0 & - & - \\ -0 & - \\ 0 & 0 & 0 \end{array}$	$\begin{array}{ccc} 0 & 0 & - \\ - & 0 & - \\ 0 & 0 & 0 \end{array}$	$\begin{aligned} & 00- \\ & -0- \\ & 000 \end{aligned}$	$\begin{array}{llll} \hline 0 & - & - \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{\|ccc\|} \hline 0 & - & - \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & - \\ 0 & 0 & - \\ 0 & 0 & 0 \end{array}$	$\begin{array}{llll} \hline 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & \circ \end{array}$	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-0 \end{aligned}$
$\begin{aligned} & s_{8_{0}} \\ & s_{8_{1}} \\ & s_{8_{2}} \end{aligned}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & - & - \end{array}$	$\begin{array}{ll} \hline 000 \\ -\infty \end{array}$	$\begin{aligned} & \hline 000 \\ & -0- \\ & -0- \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ -0 \end{gathered} 0-$	0 0 0 0 - - 0 - -		000 00 00 -	$\begin{array}{\|lll} \hline 0 & 0 & 0 \\ - & -0 \\ - & -0 \end{array}$	

(c) Satisfy $s_{7_{1_{5_{2}}}} \rightarrow$ impossible $r_{7_{1_{4}}}$

P	-	---	- 0 -	- $0-$	$0--$	0	- 0-		0--
$\begin{aligned} & s_{0_{0}} \\ & s_{0} \\ & s_{0} \\ & s_{0_{2}} \\ & \hline \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & -0- \\ & --- \\ & --0 \end{aligned}$	$\left\lvert\, \begin{aligned} & -0- \\ & -0- \\ & -0- \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & -0- \\ & -0- \\ & -0- \end{aligned}\right.$	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$	$\left\lvert\, \begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}\right.$	$\begin{aligned} & \hline 00- \\ & -0- \\ & -0- \end{aligned}$	$\left\|\begin{array}{c}0-- \\ -0-\end{array}\right\|$	$\begin{aligned} & 001 \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & s_{1_{0}} \\ & s_{1} 1_{1} \\ & s_{1} \\ & \hline \end{aligned}$	$\begin{gathered} 0-- \\ --0 \end{gathered}$	$\begin{array}{llll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & -0- \\ & -0- \end{aligned}$	$\begin{aligned} & -0- \\ & -0- \end{aligned}$	$\begin{aligned} & 0-- \\ & 0-- \end{aligned}$	$\begin{aligned} & 0-- \\ & 0-- \end{aligned}$	$\begin{array}{cc} 0 & 0 \\ -0 & - \\ -0 & - \end{array}$	$\left.\begin{array}{\|c\|} \hline 0-- \\ -0- \end{array} \right\rvert\,$	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & s_{2_{0}} \\ & s_{2} \\ & s_{2} \end{aligned}$	000	000	$\left\lvert\, \begin{array}{lll} 1 & \circ & \circ \\ \circ & \circ & \circ \\ \circ & \circ & 1 \end{array}\right.$	$\begin{array}{\|ccc} -0 & 0 & - \\ 0 & 0 & 0 \\ -0 & 0 \end{array}$	$\begin{aligned} & 0-- \\ & 0 \\ & 0 \\ & 0 \end{aligned} 0$	$\begin{array}{lll} 0 & - & - \\ 0 & 0 & 0 \\ 0 & - & - \end{array}$	$\begin{array}{llll} \hline 0 & 0 & - \\ 0 & 0 & 0 \\ 0 & 0 & - \\ \hline \end{array}$	$\left\|\begin{array}{lll} 0 & - & - \\ 0 & 0 & 0 \end{array}\right\|$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned} 0-$
$\begin{aligned} & { }^{s_{3} 3_{0}} \\ & { }^{s_{3}} \\ & s_{3} \end{aligned}$	000	000	$\begin{array}{ccc} -0 & - \\ 0 & 0 & 0 \\ -0 & 0 \end{array}$	$\begin{array}{lll} \hline 1 & \circ & \circ \\ \circ & \circ & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{\|lll\|} \hline 0 & - & - \\ 0 & 0 & 0 \\ 0 & - & - \\ \hline \end{array}$	$\begin{array}{\|lll\|} \hline 0 & - & - \\ 0 & 0 & 0 \\ 0 & - & - \\ \hline \end{array}$	$\begin{array}{lll} \hline 0 & 0 & - \\ 0 & 0 & 0 \\ - & 0 & - \end{array}$	$\left\|\begin{array}{lll} 0 & - & - \\ 0 & 0 & 0 \end{array}\right\|$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned} \quad-\quad-\quad 0$
$\begin{aligned} & s_{4_{0}} \\ & s_{4_{1}} \\ & s_{4_{2}} \\ & \hline \end{aligned}$			$\left\lvert\, \begin{array}{cc} 0 & 0 \\ -0 & 0 \\ -0 & - \end{array}\right.$	$\left\|\begin{array}{c} 0 \end{array}\right\| \begin{gathered} 0 \\ -0 \\ -0 \end{gathered}$	$\begin{array}{llll} \circ & 0 & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{\|lll\|} \hline 0 & 0 & 0 \\ 0 & - & - \\ 0 & - & 0 \end{array}$	$\begin{gathered} 000 \\ -0 \\ -0 \\ -0 \end{gathered}$	0000	$\begin{aligned} & 000 \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & s_{5_{0}} \\ & s_{5}{ }_{1} \\ & s_{5}{ }_{2} \end{aligned}$			$\left\lvert\, \begin{array}{lll} 0 & 0 & 0 \\ -0 & - \\ -0 & - \end{array}\right.$	$\left\lvert\, \begin{array}{lll} 0 & 0 & 0 \\ -0 & - \\ -0 & - \end{array}\right.$	$\begin{aligned} & 000 \\ & 0-- \\ & 0-0 \end{aligned}$	$\begin{array}{llll} \hline & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{\|ccc\|} \hline 0 & 0 & 0 \\ - & 0 & - \\ - & 0 & - \\ \hline \end{array}$	0000	$\begin{aligned} & 000 \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & { }^{s_{6}} 0 \\ & s_{6} \\ & s_{1} \\ & s_{6} \\ & \hline \end{aligned}$	$\begin{array}{ll} 0 & -- \\ 0 & 0 \end{array}$	$\begin{array}{llll}0 & - \\ 0 & 0 & 0\end{array}$	$\left\lvert\, \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ - & 0 & - \end{array}\right.$	$\left\|\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -0 & - \end{array}\right\|$	$\begin{array}{ll} 0 & - \\ 0 & 0 \\ 0 & 0 \\ 0 & - \end{array}$	$\begin{array}{lll} 0 & - & - \\ 0 & 0 & 0 \\ 0 & - & - \end{array}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & \circ & \circ \\ \circ & \circ & 1 \end{array}$		$\begin{array}{ll} 0 & - \\ 0 & 0 \\ 0 & 0 \end{array}$
$\begin{aligned} & { }^{s^{7_{0}}} \\ & { }^{{ }^{7} 1} 1 \\ & { }^{s_{7}} \\ & \hline \end{aligned}$	$\begin{aligned} & 0-- \\ & -0- \end{aligned}$	$\begin{aligned} & 0-- \\ & -0-0 \end{aligned}$	$\left\lvert\, \begin{gathered} 00- \\ -0- \\ -0- \end{gathered}\right.$	$\left\lvert\, \begin{array}{cc} 0 & 0 \\ -0 & - \\ -0 & - \end{array}\right.$	$\left\|\begin{array}{ll} 0 & 0 \end{array}\right\|$	$\begin{array}{lll} 0 & - \\ 0 & 0 & - \\ 0 & - \end{array}$	$\begin{aligned} & -0- \\ & -0- \\ & -0 \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & { }^{s_{8} 8_{0}} \\ & { }^{s_{1}} \\ & s_{8_{2}} \end{aligned}$	000 0	000	$\left\lvert\, \begin{array}{lll} 0 & 0 & 0 \\ -0 & - \\ -0 & - \end{array}\right.$	$\left\|\begin{array}{ccc} 0 & 0 & 0 \\ - & 0 & - \\ -0 & - & - \end{array}\right\|$	$\begin{aligned} & 0000 \\ & 0-- \\ & 0-- \end{aligned}$	$\left\lvert\, \begin{array}{lll} 0 & 0 & 0 \\ 0 & - & - \\ 0 & - & - \end{array}\right.$	$\begin{array}{lll} \hline 0 & 0 & 0 \\ -0 & 0 & - \\ -0 & - \end{array}$	0000	$\begin{array}{lll} \hline \circ & \circ & 0 \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$

(b) Satisfy $s_{6_{0_{3_{2}}}} \rightarrow \neg r_{6_{0_{2}}} \rightarrow \neg r_{7_{2}}$

P	--	--	- $0-$	- $0-$	0--	$0--$	001	100	0--
$\begin{aligned} & s_{0_{0}} \\ & s_{0_{1}} \\ & s_{0_{2}} \\ & \hline \end{aligned}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \\ \hline \end{array}$		$\left\lvert\, \begin{aligned} & -0- \\ & -0- \\ & -0- \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & -0- \\ & -0- \\ & -0- \end{aligned}\right.$	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$	$\begin{array}{\|l} \hline 0-- \\ 0-- \\ 0-- \end{array}$	$\begin{array}{\|lll\|} \hline 0 & 0 & - \\ 0 & 0 & - \\ 0 & 0 & - \\ \hline \end{array}$	$\left\lvert\, \begin{array}{ccc} 0 & 0 & 0 \\ -0 & 0 \\ -0 & 0 \end{array}\right.$	$\begin{aligned} & 001 \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & s_{1} 1_{0} \\ & s_{1} \\ & s_{1} \\ & s_{1} \\ & \hline \end{aligned}$	$\begin{gathered} -- \\ 0-- \\ --0 \end{gathered}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\left\lvert\, \begin{aligned} & -0- \\ & -0- \\ & -0- \end{aligned}\right.$	$\begin{aligned} & -0- \\ & -0- \\ & -0- \end{aligned}$	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$	$\begin{array}{lll} 0 & 0 & - \\ 0 & 0 & - \\ 0 & 0 & - \end{array}$	$\left\|\begin{array}{ccc} 0 & 0 & 0 \\ -0 & 0 & 0 \\ -0 & 0 \end{array}\right\|$	$\begin{aligned} & 0-- \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & s_{2_{0}} \\ & s_{2}{ }_{1} \\ & s_{2_{2}} \end{aligned}$	000	$\begin{array}{ll} --- \\ 0 & 0 \end{array}$	$\begin{array}{llll} 1 & \circ & \circ \\ \circ & \circ & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{ccc} -0 & - \\ 0 & 0 & 0 \\ -0 & 0 \end{array}$	$\begin{array}{llll} \hline 0 & - & - \\ 0 & 0 & 0 \\ 0 & - & - \end{array}$	$\begin{array}{llll} \hline 0 & - & - \\ 0 & 0 & 0 \\ 0 & - & - \end{array}$	$\begin{array}{llll} \hline 0 & 0 & - \\ 0 & 0 & 0 \\ 0 & 0 & - \end{array}$	$\left.\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -0 & 0 \end{array} \right\rvert\,$	$\begin{aligned} & 0-- \\ & 0 \\ & 0 \end{aligned} 0$
$\begin{aligned} & s_{3_{0}} \\ & s_{3} \\ & s_{1} \\ & s_{3} \\ & \hline \end{aligned}$	----	$\begin{aligned} & --\quad-\quad \\ & 00 \end{aligned}$	$\begin{array}{rrr} -0 & - \\ 0 & 0 & 0 \\ -0 & 0 \end{array}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & \circ & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{ll} 0 & -- \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{ll} 0 & -- \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{\|lll\|} \hline 0 & 0 & - \\ 0 & 0 & 0 \\ 0 & 0 & - \end{array}$	$\begin{array}{llll} \hline 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{aligned} & 0-- \\ & 0000 \\ & 0-- \end{aligned}$
$\begin{aligned} & s_{4_{0}} \\ & s_{4_{1}} \\ & s_{4} \\ & \hline \end{aligned}$	000	000	$\begin{aligned} & 000 \\ & -0- \\ & -0- \end{aligned}$	$\begin{aligned} & 000 \\ & -0- \\ & -0- \end{aligned}$	$\begin{array}{llll} \hline \circ & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{llll} \hline 0 & 0 & 0 \\ 0 & - & - \\ 0 & -0 \end{array}$	$\begin{array}{\|ccc\|} \hline 0 & 0 & 0 \\ 0 & 0 & - \\ 0 & 0 & - \\ \hline \end{array}$	$\left\|\begin{array}{ccc} 0 & 0 & 0 \\ -0 & 0 \\ -0 & 0 \end{array}\right\|$	$\begin{aligned} & 000 \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & s_{5_{0}} \\ & s_{5} \\ & s_{5} \end{aligned}$	000	000	$\left\lvert\, \begin{array}{cc} 0 & 0 \\ -0 & 0 \\ -0 & - \\ \hline \end{array}\right.$	$\begin{aligned} & 000 \\ & -0- \\ & -0- \end{aligned}$	$\begin{array}{\|ccc\|} \hline 0 & 0 & 0 \\ 0 & - & - \\ 0 & - & 0 \end{array}$	$\begin{array}{llll} \hline \circ & \circ & \circ \\ \circ & 1 & \circ \\ \circ & \circ & 1 \end{array}$	$\begin{array}{\|llll\|} \hline 0 & 0 & 0 \\ 0 & 0 & - \\ 0 & 0 & - \\ \hline \end{array}$	$\left\lvert\, \begin{array}{ccc} 0 & 0 & 0 \\ -0 & 0 \\ -0 & 0 \end{array}\right.$	$\begin{aligned} & 000 \\ & 0-- \\ & 0-- \end{aligned}$
$\begin{aligned} & s_{6_{0}} \\ & s_{6} \\ & s_{6} \\ & s_{6} \\ & \hline \end{aligned}$	$\begin{array}{lll} \hline 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} \hline 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ - & 0 & - \end{array}$	$\begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ - & 0 & - \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & - & - \end{array}$	$\begin{array}{lll} \hline 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & - & - \end{array}$	$\begin{array}{llll} \hline & \circ & \circ \\ \circ & \circ & \circ \\ \circ & \circ & 1 \end{array}$	$\left\|\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -0 & 0 \end{array}\right\|$	$\begin{array}{lll} \hline 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & - & - \end{array}$
$\begin{aligned} & { }^{{ }^{s} 7_{0}} \\ & { }^{5} 7_{1} \\ & { }^{s} 7_{2} \\ & \hline \end{aligned}$	$\begin{array}{lll} 0 & - & - \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & - & - \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & - & - \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & - & - \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & - \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 1 & \circ & \circ \\ \circ & \circ & \circ \\ \circ & \circ & \circ \end{array}$	$\begin{array}{lll} 0 & - & - \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$
$\begin{aligned} & s_{8_{0}} \\ & s_{8_{1}} \\ & s_{8_{2}} \\ & \hline \end{aligned}$	$\begin{array}{llll} \hline 0 & 0 & 0 \\ 0 & - & - \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ -- & - \end{array}$	$\begin{aligned} & 000 \\ & -0- \\ & -0- \end{aligned}$	$\begin{aligned} & 000 \\ & -0- \\ & -0- \end{aligned}$	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & - \\ 0 \end{array}$	$\begin{array}{lll} \hline 0 & 0 & 0 \\ 0 & - & - \\ 0 & - & - \end{array}$	$\begin{array}{\|cccc} \hline 0 & 0 & 0 \\ 0 & 0 & - \\ 0 & 0 & - \\ \hline \end{array}$	$\begin{array}{\|ccc\|} \hline 0 & 0 & 0 \\ -0 & 0 & 0 \\ -0 & 0 \end{array}$	

(d) Satisfy $s_{7_{0_{2}}} \rightarrow \neg r_{7_{0_{3}}} \rightarrow \neg c_{7_{3}} \rightarrow$ CTR

Figure 85: 2-variable contradiction polynomially expanded to 3 -SAT - stage 3

[^0]: 1. A reliable source claims: "Es gibt schon so ganz harte Autisten die netlists debuggen" which means "There are actually some totally extreme autists who are debugging netlists". My humorous take on this fact is available at http://sw-amt.ws/the-sound-of-logic/README-wax-on-wax-off.html.
[^1]: 2. This is the reason, why any attempt of a functional analysis in symbolic notation is utterly useless.
[^2]: 4. I prefer multiplying out the DNF clauses, which does not involve a research for the proof, but only truth tables. For the life of me, I cannot seem to remember, where all of these tautologies can be found.
[^3]: 5. When rephrasing $L I$ as " A is A, and ${ }^{\sim} A$ is $\sim A$ " and interpreting an atomic state with its conflict relations as a state that requires itself, the propositional variable representation of two atomic states fits perfectly. But that may be actually entering the twilight zone.
[^4]: 6. MiniSat v2.2.0
 7. Lingeling SAT Solver, Version azd 0d997521ad2e7d4e94f5d74a4665455b91309b62
