Generalization of CNF and Consequences for DNF of Implicants under Distributive Expansion

Wolfgang Scherer

Wolfgang.Scherer@gmx.de

Abstract

The conjunctive normal form CNF, is generalized to a conjunction of disjunctive normal form clauses CDF, by dropping the restrictions for syllogistic formulas. It is shown, that this can lead to more desirable results for solving some satisfiability and counting problems. Distributive expansion of logical formulae is shown to have properties different from distributive expansion of arithmetic formulae and can be broken down into polynomial time and exponential time parts. The polynomial time portion can be used to develop systematic algorithms which can neither be provided by mathematical logic nor plain graph theory.

Contents

1 CNF, Syllogistic Formulas, BCF 2
2 From CNF to a Conjunction of DNF Clauses 2
3 Conflict Maximization 6
4 Partial Distributive Expansion 7
4.1 Requirement Identification 9
4.2 Requirement Propagation Round 1 10
4.3 Requirement Propagation Round 2 11
4.4 Translate PDE to CDF 11
4.5 PDE with Conflict Maximization 12
4.6 Rationale for PDE 13
5 Experiments 13
6 Conclusion 14
Appendix A. Examples 16
A.1. Example for Theorem 1 16
A.2. Example for Theorem 3 16
A.3. Example 1 for Theorem 4 17
A.4. Example 2 for Theorem 4 18
A.5. Summary for Verification of Examples 19
Appendix B. Detailed Summary of Experiments 19

1. CNF, Syllogistic Formulas, BCF

This article is retrofitted onto the work of Blake, Canonical expressions in Boolean algebra[BLAKE] as outlined in Boolean Reasoning: The Logic of Boolean Equations[BROWN, chapter 4 and appendix A].

Obviously, the restrictions for a conjunctive normal form CNF - namely removal of duplicate literals and elimination of clauses with contradictory literals - have been loosened over time. However, this seems to have been a process of ad hoc reasoning[w3s].

Since Blake's proof depends on the notion of syllogistic formulas, the original definition of a CNF is kept fully intact, as it guarantees that a CNF is syllogistic[BROWN, chapter 4.6]. The restrictions are lifted separately by generalization.

Theorem 1. Distributive expansion of a CNF formula P_{c} (multiplication of a product of sums, POS) results in a formula P_{d} in disjunctive normal form DNF (sum of products, $S O P$) defining the set of all prime implicants I_{p} for $P_{c} . P_{d}$ is called a Blake canonical form $B C F[b c f]$.

The proof is given in [BROWN, theorem A.2.1].

2. From CNF to a Conjunction of DNF Clauses

As is pointed out in [BROWN, section 4.6.3], a syllogistic formula or a BCF are not necessarily always desired, since they may consist of a considerable amount of redundant prime implicates/implicants. However, no alternative method involving distributive expansion is given.

For an informal exploration by example, let

$$
\begin{aligned}
& m_{0}=(p \vee q \vee r), \\
& m_{1}=(\neg p \wedge q), \\
& m_{2}=(\neg p \wedge \neg q \wedge r), \\
& m_{3}=\left(p \vee m_{1} \vee m_{2}\right), \\
& m_{4}=(p \wedge s), \\
& m_{5}=(p \wedge \neg s \wedge t) .
\end{aligned}
$$

The following truth table shows that a disjunctive clause, $m_{o}=\left(\begin{array}{c}p \vee \vee\end{array}\right)$, of a CNF formula allows the maximum number of conjunctions during distributive expansion with another clause containing the literal p (see columns $(p \wedge q),(p \wedge r)$). It also shows, that a slight variation in the terms of a disjunctive clause, $m_{3}=$ $(p \vee(\neg p \wedge q) \vee(\neg p \wedge \neg q \wedge r))$, minimizes the number of possible conjunctions during distributive expansion (see columns $\left.\left(p \wedge m_{1}\right),\left(p \wedge m_{2}\right)\right)$.

p	q	r	m_{0}	p	m_{1}	m_{2}	m_{3}	$p \wedge q$	$p \wedge m_{1}$	$p \wedge r$	$p \wedge m_{2}$
0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	0	1	1	0	0	0	0
0	1	0	1	0	1	0	1	0	0	0	0
0	1	1	1	0	1	0	1	0	0	0	0
1	0	0	1	1	0	0	1	0	0	0	0
1	0	1	1	1	0	0	1	0	0	1	0
1	1	0	1	1	0	0	1	1	0	0	0
1	1	1	1	1	0	0	1	1	0	1	0

While $m_{0}=(p \vee q \vee r)$ and $m_{3}=(p \vee(\neg p \wedge q) \vee(\neg p \wedge \neg q \wedge r))$ are logically equivalent, distributive expansion with another clause containing p should result in fewer conjunctions for m_{3} than for m_{0}.

In example 1, normal distributive expansion of a CNF formula P produces the set of all prime implicants for P :

$$
\begin{aligned}
P= & (p \vee q \vee r) \wedge(\neg p \vee s \vee t) \\
= & (p \wedge(\neg p \vee s \vee t)) \vee(q \wedge(\neg p \vee s \vee t)) \vee \\
& (r \wedge(\neg p \vee s \vee t)) \\
& \left(\begin{array}{l}
p \wedge \neg p) \vee(p \wedge s) \vee(p \wedge t) \vee(q \wedge \neg p) \vee \\
\\
(q \wedge s) \vee(q \wedge t) \vee(r \wedge \neg p) \vee(r \wedge s) \vee \\
\\
\\
(r \wedge t) \\
\\
(r \wedge s \wedge) \vee(p \wedge t) \vee(q \wedge \neg p) \vee(q \wedge s) \vee \\
\\
(q \wedge t) \vee(r \wedge \neg p) \vee(r \wedge s) \vee(r \wedge t)
\end{array}\right.
\end{aligned}
$$

In example 2, distributive expansion of problem P_{m} (logically equivalent to P) produces the structurally equivalent CNF problem P by expansion and simplification of innermost clauses first:

$$
\begin{aligned}
& P_{m}=(p \vee(\neg p \wedge q) \vee(\neg p \wedge \neg q \wedge r)) \wedge \\
& (\neg p \vee(p \wedge s) \vee(p \wedge \neg s \wedge t)) \\
& =((p \vee \neg p) \wedge(p \vee q)) \vee(\neg p \wedge \neg q \wedge r)) \wedge \\
& ((\neg p \vee p) \wedge(\neg p \vee s)) \vee(p \wedge \neg s \wedge t)) \\
& =(p \vee q \vee(\neg p \wedge \neg q \wedge r)) \wedge \\
& (\neg p \vee s \vee(p \wedge \neg s \wedge t)) \\
& =(p \vee q \vee \neg p) \wedge(p \vee q \vee \neg q) \wedge\left(\begin{array}{c}
p \vee q \vee r) \wedge
\end{array}\right. \\
& (\neg p \vee s \vee p) \wedge(\neg p \vee s \vee \neg s) \wedge(\neg p \vee s \vee t) \\
& =(p \vee q \vee r) \wedge(\neg p \vee s \vee t)
\end{aligned}
$$

Further distributive expansion leads to the same result as example 1. This result is disappointing and probably the reason, why distributive expansion is intuitively categorized as purely exponential method. But the next example shows that there is a remedy.

In example 3, distributive expansion of P_{m} (logically equivalent to P), but with expansion and simplification of outermost clauses first, produces a set of implicants, which is structurally different from the set of prime implicants (some steps omitted for brevity):

$$
\begin{aligned}
& P_{m}=\left(p \vee m_{1} \vee m_{2}\right) \wedge\left(\neg p \vee m_{4} \vee m_{5}\right) \\
& =\left(p \wedge\left(\neg p \vee m_{4} \vee m_{5}\right)\right) \vee\left(m_{1} \wedge\left(\neg p \vee m_{4} \vee m_{5}\right)\right) \vee \\
& \left(m_{2} \wedge\left(\neg p \vee m_{4} \vee m_{5}\right)\right) \\
& =(p \wedge \neg p) \vee\left(p \wedge m_{4}\right) \vee\left(p \wedge m_{5}\right) \vee\left(m_{1} \wedge \neg p\right) \vee \\
& \left(m_{1} \wedge m_{4}\right) \vee\left(m_{1} \wedge m_{5}\right) \vee\left(m_{2} \wedge \neg p\right) \vee\left(m_{2} \wedge m_{4}\right) \vee \\
& \left(m_{2} \wedge m_{5}\right) \\
& =\left(p \wedge m_{4}\right) \vee\left(p \wedge m_{5}\right) \vee\left(m_{1} \wedge \neg p\right) \vee\left(m_{1} \wedge m_{4}\right) \vee \quad \mid m_{1}=\neg p \wedge \quad q \\
& \left(m_{1} \wedge m_{5}\right) \vee\left(m_{2} \wedge \neg p\right) \vee\left(m_{2} \wedge m_{4}\right) \vee\left(m_{2} \wedge m_{5}\right) \\
& =\left(p \wedge m_{4}\right) \vee\left(p \wedge m_{5}\right) \vee(\neg p \wedge q) \vee\left(\neg p \wedge q \wedge m_{4}\right) \vee \quad \mid m_{4}=p \wedge s \\
& \left(\neg p \wedge q \wedge m_{5}\right) \vee\left(m_{2} \wedge \neg p\right) \vee\left(m_{2} \wedge m_{4}\right) \vee\left(m_{2} \wedge m_{5}\right) \\
& =(p \wedge s) \vee\left(p \wedge m_{5}\right) \vee(\neg p \wedge q) \vee \quad \mid m_{2}=\neg p \wedge \neg q \wedge r \\
& \left(\neg p \wedge q \wedge m_{5}\right) \vee\left(m_{2} \wedge \neg p\right) \vee \\
& \left(m_{2} \wedge p \wedge s\right) \vee\left(m_{2} \wedge m_{5}\right) \\
& =(p \wedge s) \vee\left(p \wedge m_{5}\right) \vee(\neg p \wedge q) \vee\left(\neg p \wedge q \wedge m_{5}\right) \vee \quad \mid m_{5}=p \wedge \neg s \wedge t \\
& (\neg p \wedge \neg q \wedge r) \vee\left(\neg p \wedge \neg q \wedge r \wedge m_{5}\right) \\
& =(p \wedge s) \vee(p \wedge \neg s \wedge t) \vee(\neg p \wedge q) \vee(\neg p \wedge \neg q \wedge r)
\end{aligned}
$$

Partial Distributive Expansion

The results are repeated to make comparison easier:

$$
\begin{aligned}
& (p \vee q \vee r) \wedge(\neg p \vee s \vee t) \\
& =(p \wedge s) \vee(p \wedge t) \vee(q \wedge \neg p) \vee(q \wedge s) \vee \\
& (q \wedge t) \vee(r \wedge \neg p) \vee(r \wedge s) \vee(r \wedge t) \\
& (p \vee(\neg p \wedge q) \vee(\neg p \wedge \neg q \wedge r)) \wedge \\
& (\neg p \vee(p \wedge s) \vee(p \wedge \neg s \wedge t)) \\
& =\left(p \vee m_{1} \vee m_{2}\right) \wedge\left(\neg p \vee m_{4} \vee m_{5}\right) \\
& =(p \wedge s) \vee(p \wedge \neg s \wedge t) \vee(\neg p \wedge q) \vee(\neg p \wedge \neg q \wedge r)
\end{aligned}
$$

The results are logically equivalent, since they were both obtained by algebraic transformation. However they differ structurally in the number of conjunctive clauses and the properties of the clauses in relation to each other.
The result from example 3 provides the incentive for a generalization of CNF formulas.
A generalized conjunction of DNF clauses is called CDF to avoid clashes with the abbreviation for a canoncial disjunctive normal form CDNF. It also signifies, that there is no intention of constructing artificial "normal" or "canonical" forms, which are aesthetically nice, but quite impractical for, e.g., counting the number of satisfying total assignments.
While the definition of a DNF holds, the requirements for a CNF are lifted. This is important, when all conjunctions s of a DNF S consist of a single literal and therefore S degrades to a simple disjunction with plain literals of atomic variables. There is explicitely no requirement to eliminate duplicate literals in a degraded DNF. Variables can also appear both negated and unnegated in a degraded DNF.
Any CNF formula is therefore also a CDF formula, whereas not all CDF formulas are proper CNF formulas.

Theorem 2. Any CDF formula P can be transformed to an equisatisfiable CNF formula P_{s}, which is syllogistic.

Proof. Any CDF formula P can be trivially converted to a selection problem P_{s} by assigning a new variable $v_{i_{j}}$ to each conjunction $s_{i_{j}}$ of each DNF S_{i} of $P, i=$ $(1,2, \ldots,|P|), j=\left(1,2, \ldots,\left|S_{i}\right|\right)$. A disjunction of all unnegated variables $v_{i_{j}},\left(v_{i_{1}} \vee\right.$ $v_{i_{2}} \vee \ldots \vee v_{i_{\left|S_{i}\right|} \mid}$, is added to P_{s} for each DNF S_{i} (at-least-one clauses). For each pair of variables $\left(v_{i_{j}}, v_{i_{h}}\right), j \neq h, h=\left(1,2, \ldots,\left|S_{i}\right|\right)$, a disjunction $\left(\neg v_{i_{j}} \vee \neg v_{i_{h}}\right)$ is added to P_{s} (at-most-one clauses). For each conflicting pair of conjunctions $\left(s_{i_{j}}, s_{f_{g}}\right), i \neq$ $f, f=(1,2, \ldots,|P|), g=\left(1,2, \ldots,\left|S_{f}\right|\right)$ a disjunction $\left(\neg v_{i_{j}} \vee \neg v_{f_{g}}\right)$ is added to P_{s} (conflict clauses)[HOS, chapter 2, direct encoding].
Obviously P_{s} is syllogistic, since there are either only negated or only unnegated variables in each clause[BROWN, chapter 4.6].

Note, that the weaker restrictions of a CDF formula P allow to extend P by adding all propositional variables p appearing in P, represented by disjunctions $(p \vee \neg p)$ for each variable. The corresponding selection problem P_{s} then carries its own translation map for the original set of variables. As a courtesy, SAT solvers will solve the selection problem for both the variables of the selection problem and the variables of the original CDF problem and a tedious mapping process is not necessary.
Since a selection problem P_{s} is again a CDF, a malicious encoder can boost the virtual hardness of any problem by applying theorem 2 any number of times.

3. Conflict Maximization

The term conflict exclusively refers to opposing literals in clauses and should not be confused with the term conflict from the context of conflict driven clause learning CDCL.
While a CDF is not restricted to special DNF clauses, the most interesting in the context of this article is the set E of DNF clauses which are logically equivalent to a disjunction of literals (aka. regular CNF clause).
The most prominent members of E are DNF clauses, where all conjunctions have a maximum of conflicting literals.

Theorem 3. If we transform a disjunctive clause S_{d} with k literals to a disjunctive clause S_{m} of conjunctions by replacing each literal $l_{i}, i=(1, \ldots, k)$ with the conjunction $\left(\neg l_{1} \wedge \ldots \wedge \neg l_{i-1} \wedge l_{i}\right)$, then S_{m} will be logically equivalent to S_{d}. The clause S_{m} is called a clause with maximized conflicts.

Proof. Distributive expansion of S_{m} shows the logical equivalence to the unmaximized clause S_{d}. E.g.:

$$
\begin{aligned}
& ((p) \vee(\neg p \wedge q)) \\
= & (p \vee \neg p) \wedge(p \vee q) \\
= & (p \vee q)
\end{aligned}
$$

Theorem 4. Distributive expansion of a CDF formula with maximized conflicts P_{m}, results in a DNF formula P_{u} defining a set of (not necessarily prime) implicants I_{u} for P_{m}, if expansion and simplification of outermost clauses is performed strictly before innermost clauses. The implicants from I_{u} cover all possible satisfying total assignments for P_{m}.

Proof. Since the order of expansion and simplification does not change the logical function represented by the expansion, the result I_{p} from theorem 1 must be logically equivalent to I_{u}. Since I_{p} covers all satisfying total assignments, by extension I_{u} must also cover all satisfying total assignments.

Note, that the order of expansion and simplification is significant. If innermost clauses are simplified first, P_{m} degrades to a regular CNF formula (as shown in example 2) and the result of distributive expansion is the set of all prime implicants.

Hypothesis 5. The implicants I_{u} established by theorem 4 are unique, in that no implicant $M_{x} \in I_{u}$ covers the satisfying total assignments of any other implicant $M_{y} \in I_{u}, x \neq y ; x, y \in\left\{1,2, \ldots,\left|I_{u}\right|\right\}$.

The proof is omitted here, since it becomes much simpler in the generalized theory of the satoku matrix. However, it is still mentioned, since uniqueness of implicants is very convenient, if the number of satisfying total assignments must be counted. This is much easier with the set of implicants I_{u} than with the set of prime implicants I_{p} from theorem 1, where duplicate total assignments have to be accounted for.

4. Partial Distributive Expansion

Now that we have established that distributive expansion of logical formulae has more than just trivial aspects, so further analysis of its properties is warranted.

Since partial distributive expansion PDE is based on a computer algorithm, indices are shifted to programming language conventions to avoid translation errors between the program source code and the description:
Disjunctions S are labeled $S_{i}, i=(0,1, \ldots, m-1), m=|P|$.
Conjunctions s are labeled $s_{i_{j}}, j=\left(0,1, \ldots,\left|S_{i}\right|-1\right)$.
Dependencies between all conjunctions of disjunctions S_{i} and $S_{f}, f=(0,1, \ldots, m-1)$ are denoted as $S_{i, f}$.
Dependencies between conjunctions $s_{i_{j}}$ and $s_{f_{g}}, g=\left(0,1, \ldots,\left|S_{f}\right|-1\right)$ are denoted as row, column pairs $s_{i_{j}, f_{g}}$.
Literals $l_{i_{j}}$ of CNF clauses S_{i} relate to the conjunction dependencies $s_{i_{j}, i_{j}}$ in the PDE matrix.

Partial distributive expansion PDE is designed as a systematic process to refine partial assignments incrementally without arbitrary decisions. Each conjunction $s_{i_{j}}$ of a DNF S_{i} of a CDF P is interpreted as a partial assignment for P. This is motivated by the fact that distributive expansion produces a set of implicants I for P. Each implicant of I therefore necessarily refines one or more conjunctions $s_{i_{j}}$.
It turns out, that neither implication graphs nor adjacency matrices nor clausevariable matrices[HOS, section 11.2], let alone the principles of decision algorithms and CDLC, are sufficient to describe all mechanisms of PDE efficiently. The closest representation for PDE is an adjacency matrix. However, an adjacency matrix lacks the necessary properties to systematically examine the consequences of dependencies between disjunctions of conjunctions (clause constraints).

The PDE matrix is itself only a stepping stone to the generalized satoku matrix. Its sole purpose is to illustrate the relation between a CDF problem with clauses and variables and the fully abstracted satoku matrix, where the notion of a substantial difference between clauses and variables becomes meaningless. Therefore, only an informal presentation by example is included, postponing the precise formalization to the satoku matrix.
Starting with a propositional CNF formula P with m disjunctive clauses C_{i} of size k, $m=|P|, i=0 \ldots(m-1), k=\left|C_{i}\right|:$

$$
\begin{aligned}
& (\neg a \vee \neg b) \wedge \\
& (\neg a \vee d) \wedge \\
& \left(\begin{array}{ll}
a \vee & b
\end{array}\right) \wedge \\
& \left(\begin{array}{ll}
a \vee & c
\end{array}\right.
\end{aligned}
$$

Convert each disjunction C_{i} of literals $l_{i_{j}}$ to a disjunction S_{i} of conjunctions $s_{i_{j}}$, $j=0 \ldots\left(\left|C_{i}\right|-1\right)$:

$$
\begin{aligned}
& ((\neg a) \vee(\neg b)) \wedge \\
& ((\neg a) \vee(d)) \wedge \\
& \left(\left(\begin{array}{c}
a) \vee(\quad b)) \wedge \\
\left(\left(\begin{array}{c}
a
\end{array}\right) \vee(c)\right)
\end{array}\right.\right.
\end{aligned}
$$

As visual hint, spread each disjunction S_{i} over two lines:

Extend each conjunction $s_{i_{j}}$ with truth values T (signifying independency) to a length of $\sum_{i=0}^{[P]-1}\left|S_{i}\right|$ in the following manner:

$$
\begin{aligned}
& ((\neg a \wedge T \wedge T \wedge T \wedge T \wedge T \wedge T \wedge T) \vee \\
& (T \wedge \neg b \wedge T \wedge T \wedge T \wedge T \wedge T \wedge T)) \wedge \\
& ((T \wedge T \wedge \neg a \wedge T \wedge T \wedge T \wedge T \wedge T) \vee \\
& (T \wedge T \wedge T \wedge \wedge \wedge T \wedge T \wedge T \wedge T)) \wedge \\
& ((T \wedge T \wedge T \wedge T \wedge a \wedge T \wedge T \wedge T) \vee \\
& (T \wedge T \wedge T \wedge T \wedge T \wedge b \wedge T \wedge T)) \wedge \\
& ((T \wedge \wedge \wedge T \wedge T \wedge T \wedge T \wedge a \wedge T) \vee \\
& (T \wedge T \wedge T \wedge T \wedge T \wedge T \wedge T \wedge c))
\end{aligned}
$$

The PDE matrix is constructed to fully represent this structure with additional vertical lines to denote clause limits.

$s_{0_{0}}$	$\neg a$					
$s_{0_{1}}$		$\neg b$				
$s_{1_{0}}$		$\neg a$				
$s_{1_{1}}$			d			
$s_{2_{0}}$				a		
$s_{2_{1}}$						b
$s_{3_{0}}$						
$s_{3_{1}}$					a	

4.1 Requirement Identification

The PDE matrix can also be interpreted as a representation of the selection problem for P, where each row $s_{i_{j}}$ shows the literals that must become true, when row $s_{i_{j}}$ is selected from clause S_{i}. It is suitable to discuss requirement propagation in this context.

Following the consequences of the selection problem, observe, that if $s_{0_{0}}$ is eventually selected, then $s_{2_{0}}$ can no longer be selected, because literal $\neg a$ at position $s_{0_{0}, 0_{0}}$ conflicts with literal a at position $s_{2_{0}, 2_{0}}(\mathrm{x})$, therefore, $s_{2_{1}}$ must then be selected to preserve satisfiability.

It makes no difference, whether this required selection is made later as a matter of circumstances, or if it is promised in advance by refining partial assignment $s_{0_{0}}$ with literal b at position $s_{0_{0}, 2_{1}}$:

$s_{0_{0}}$	$\neg a$			x	b		
$s_{0_{1}}$		$\neg b$					
$s_{1_{0}}$		$\neg a$					
$s_{1_{1}}$			d				
$s_{2_{0}}$				a			
$s_{2_{1}}$					b		
$s_{3_{0}}$					a		
$s_{3_{1}}$							c

By analogy, the same is true for selection $s_{2_{0}}$ and the conflicting selection at $s_{0_{0}}(\mathrm{x})$:

$s_{0_{0}}$	$\neg a$					b	
$s_{0_{1}}$		$\neg b$					
$s_{1_{0}}$			$\neg a$				
$s_{1_{1}}$			d				
$s_{2_{0}}$	x	$\neg b$			a		
$s_{2_{1}}$						b	
$s_{3_{0}}$						a	
$s_{3_{1}}$							c

Distributive expansion of clauses S_{0}, S_{2} shows, that this is exactly what will happen:

$$
\begin{aligned}
& (\neg a \vee \neg b) \wedge(a \vee b) \\
= & ((\neg a \wedge(a \vee b)) \vee(\neg b \wedge(a \vee b))) \\
= & (\neg a \wedge a) \vee(\neg a \wedge b) \vee(\neg b \wedge a) \vee(\neg b \wedge b) \\
= & \quad(\neg a \wedge b) \vee(\neg b \wedge a)
\end{aligned}
$$

However, the result was obtained without the potentially exponential number of intermediate results of distributive expansion.

4.2 Requirement Propagation Round 1

Proceeding further, the PDE matrix is transformed to:

$s_{0_{0}}$	$\neg a$					b		c
$s_{0_{1}}$		$\neg b$			a			
$s_{1_{0}}$			$\neg a$			b		c
$s_{1_{1}}$				d				
$s_{2_{0}}$		$\neg b$		d	a			
$s_{2_{1}}$	$\neg a$					b		
$s_{3_{0}}$		$\neg b$		d			a	
$s_{3_{1}}$								c

Observe, that partial assignment $s_{0_{1}}$, which requires partial assignment $s_{2_{0}}$ is no longer consistent, since $s_{2_{0}}$ has been refined with d from $s_{1_{1}, 1_{1}}$ during the first round of partial distributive expansion.

4.3 Requirement Propagation Round 2

It is therefore necessary to enter another round of requirement propagation and refine $s_{0_{1}}$ with d at position $s_{0_{1}, 1_{1}}$ also:

$s_{0_{0}}$	$\neg a$					b		c
$s_{0_{1}}$		$\neg b$		d	a	x		
$s_{1_{0}}$		$\neg a$			b		c	
$s_{1_{1}}$			d					
$s_{2_{0}}$		$\neg b$		d	a			
$s_{2_{1}}$	$\neg a$					b		
$s_{3_{0}}$		$\neg b$		d			a	
$s_{3_{1}}$								c

Following all consequences, the PDE matrix is transformed to:

$s_{0_{0}}$	$\neg a$					b	
$s_{0_{1}}$		$\neg b$		d	a		
$s_{1_{0}}$	$\neg a$		$\neg a$			b	
$s_{1_{1}}$			d				c
$s_{2_{0}}$		$\neg b$	d	a			
$s_{2_{1}}$	$\neg a$					b	
$s_{3_{0}}$		$\neg b$		d	a		c
$s_{3_{1}}$							

It is obvious, that requirement propagation must terminate and has a strictly polynomial worst case running time. A more detailed rationale is postponed to the description of the satoku matrix.

4.4 Translate PDE to CDF

Translating the PDE matrix to a CDF formula P_{t} renders a conjunction of disjunctions S_{i} of partial assignments $s_{i_{j}}$:

$$
\begin{aligned}
& ((\neg a \wedge b \wedge c) \vee(a \wedge \neg b \wedge d)) \wedge \\
& ((\neg a \wedge b \wedge c) \vee(d)) \wedge \\
& ((a \wedge \neg b \wedge d) \vee(\neg a \wedge b \wedge c)) \wedge \\
& ((a \wedge \neg b \wedge d) \vee(c)) .
\end{aligned}
$$

After removal of redundant claues, P_{t} reduces further to:

$$
\begin{aligned}
& ((\neg a \wedge b \wedge c) \vee(a \wedge \neg b \wedge d)) \wedge \\
& ((\neg a \wedge b \wedge c) \vee(d)) \wedge \\
& ((a \wedge \neg b \wedge d) \vee(c)) .
\end{aligned}
$$

Induction over the full truth table shows that P and P_{t} are logically equivalent, which is necessarily so.
The partial assignments $(a \wedge \neg b \wedge d)$ and $(\neg a \wedge b \wedge c)$ are also implicants for P and satisfiability of P is asserted without the need to perform the final exponential step of distributive expansion.

4.5 PDE with Conflict Maximization

Applying theorem 3 to P produces the CDF P_{m} :

$$
\begin{aligned}
& ((\neg a) \vee(a \wedge \neg b)) \wedge \\
& ((\neg a) \vee(a \wedge d)) \wedge \\
& ((a) \vee(\neg a \wedge b)) \wedge \\
& ((a) \vee(\neg a \wedge c))
\end{aligned}
$$

The corresponding PDE matrix presents as:

$\begin{aligned} & s_{0_{0}} \\ & s_{0_{1}} \end{aligned}$	$\neg a \quad a \wedge \neg b$			
$\begin{aligned} & s_{1_{0}} \\ & s_{1_{1}} \end{aligned}$		$\begin{array}{ll} \neg a \\ & a \wedge \quad d \end{array}$		
$\begin{aligned} & s_{2_{0}} \\ & s_{2_{1}} \\ & \hline \end{aligned}$			$\neg a \wedge b$	
$\begin{aligned} & s_{3_{0}} \\ & s_{3_{1}} \end{aligned}$				$\begin{aligned} & a \\ & \\ & \neg a \wedge \quad c \end{aligned}$

Requirement propagation transforms the PDE matrix to:

$s_{0_{0}}$	$\neg a$		$\neg a$				$\neg a \wedge$	b		$\neg a \wedge$	c
$s_{0_{1}}$		$a \wedge \neg b$		$a \wedge$	d	a			a		
$s_{1_{0}}$	$\neg a$			$\neg a$				$\neg a \wedge$	b		$\neg a \wedge$

Translation to a CDF P_{u} results in:

$$
\begin{aligned}
& ((\neg a \wedge b \wedge c) \vee(a \wedge \neg b \wedge d)) \wedge \\
& ((\neg a \wedge b \wedge c) \vee(a \wedge \neg b \wedge d)) \wedge \\
& ((a \wedge \neg b \wedge d) \vee(\neg a \wedge b \wedge c)) \wedge \\
& ((a \wedge \neg b \wedge d) \vee(\neg a \wedge b \wedge c))
\end{aligned}
$$

After removal of redundant clauses, P_{u} presents a DNF of implicants:

$$
(a \wedge \neg b \wedge d) \vee(\neg a \wedge b \wedge c)
$$

This shows, that the PDE matrix is sufficient to process formulas according to theorem 4 by inherently avoiding early simplification of innermost clauses.

4.6 Rationale for PDE

It has been shown, that it is possible to efficiently transform the formula P :

$$
\begin{aligned}
& (\neg a \vee \neg b) \wedge(\neg a \vee d) \wedge \\
& (a \vee b) \wedge\left(\begin{array}{ll}
a \vee & c
\end{array}\right)
\end{aligned}
$$

to the logically equivalent formula P_{u} :

$$
(a \wedge \neg b \wedge d) \vee(\neg a \wedge b \wedge c)
$$

without any exponential backtracking and without any exponential distributive expansion.

5. Experiments

To show that PDE is useful for more than just trivial 2-clause problems, experiments with 100 randomly generated 3-CNF formulas having 40 variables and 171 clauses[ws-exp] were conducted. All problems, except one were solved trivially in polynomial time with a PDE based algorithm alone.
See appendix B for a detailed summary of the experiments.
Further experiments with different versions of transformations according to theorem 2 (direct encoding) show that DPLL/CDCL solvers suffer significantly from the virtual increase in hardness by the increased number of clauses and variables, when conflict maximization is not applied.

CNF			Direct enc.				Cfl max.				Cfl red.		
Var	Cls	Dec/a	Var	Cls/a	Dec/a	Var	Cls/a	Dec/a	Var/a	Cls/a	Dec/a		
40	171	30	513	2309	236	513	97905	2	86	2934	2		

Solver lingeling, Var $=$ variables, $\mathrm{Cls}=$ clauses, $\mathrm{Dec}=$ Decisions, $/ \mathrm{a}=$ average
A surprising result, which seems counter-intuitive at first is the fact, that conflict maximization with subsequent transformation to a selection problem significantly reduces the number of decisions needed by DPLL/CDCL solvers (even below the
number of decisions needed for the original CNF encoding in more than 90 out of 100 cases).
The average number of clauses $(97905 / 2934)$ for the selection problems with conflict maximization is much higher than for the original CNF encoding (171) and also higher than the average number of clauses for the selection problem without conflict maximization (2309).
The results imply that there is no correlation between the hardness of a problem and the raw number of variables and clauses at all.

For the lookahead solver march_rw, the results indicate a somewhat proportional increase in virtual hardness as expected. I.e., there is no gain through conflict maximization in relation to the original CNF encoding. However, the decrease in virtual hardness in relation to direct encoding without conflict maximization is also significantly high.

CNF			Direct enc.				Cfl max.				Cfl red.		
Var	Cls	LA/a	Var	Cls/a	LA/a	Var	Cls/a	LA/a	Var/a	Cls/a	LA/a		
40	171	122	513	2309	10720	513	97905	365	86	2934	220		

Solver march_rw, Var $=$ variables, $\mathrm{Cls}=$ clauses, $\mathrm{LA}=$ LookAheadCount, $/ \mathrm{a}=$ average

These results as well imply that there is no correlation between the hardness of a propositional problem and the raw number of variables and clauses.
A consistent test for a local search solver (WalkSat) could not be conducted, since many problems could no longer be solved in reasonable time after transformation to a selection problem.

6. Conclusion

It is obvious, that the PDE method has its limits and certainly does not generalize to an entirely polynomial algorithm for distributive expansion (sadly, there is no magic in logic).

However, the experiments with the effects of PDE on SAT solvers alone provide enough incentive to study the consequences of this method further.
The analysis shows, that the current models of logic, namely graph theory (lacking full clause constraints and dynamic clause operations) and the theory of decision problems (working on a sparse one-dimensional representation of a propositional formula) cannot efficiently produce the results of partial distributive expansion.
Theorem 2 shows vividly, that the notion of normal forms and fixed sets of variables is illusionary. There is not even a logically sound argument for generalized equisatisfiability implying any kind of nice (aka. algebraic) functional relation between
one set of variables and another set of variables, although both correctly define the dependencies of a problem with the same core clause structure.
The fact that there are infinitely many versions of the exact same problem - where one version should not be any harder to solve than any other version no matter how many additional 2-literal clauses or variables (which are only special cases of 2-literal clauses) are added - leads to the conclusion that a correct model of logic must focus on the structural properties of clauses alone.
Ultimately, the number of 2-literal clauses must not have any substantial influence on the running time of a solver algorithm. Therefore, a correct model of logic for satisfiability problems must also solve 2-SAT problems in polynomial time (which DPLL/CDCL does not) and it must deliver consistent explanations for the hardness of a problem (which graph theory does not, not even for 2-SAT problems).
PDE and conflict maximization are only the most basic principles of an (extremely simple) generalized theory, derived directly from logic itself, which is capable of modeling the intrinsic polymorphy and self-referentiality of logic, offering both a method to implicitely solve 2-SAT problems efficiently and consistent explanations for the hardness of satisfiability problems.
However, the popular belief and common expectation that the description should somehow be meaningfully produced with the incomplete concepts of graph theory and decision problems seems quite outlandish.
Citing the Handbook of Satisfiability:
"In short, CNF modelling [sic] is an art and we must often proceed by intuition and experimentation" [HOS, section 2.5],
the whole point of this article can be summarized as:
CDF modeling should not be an art, and it does not have to be. And once it no longer is, propositional problems are modeled correctly.

Appendix A. Examples

Examples for theorems are given to illustrate the different consequences.

A.1. Example for Theorem 1

$$
\begin{aligned}
& (a \vee b) \wedge(c \vee d) \wedge(\neg a \vee \neg c) \\
= & ((a \wedge c) \vee(a \wedge d) \vee(b \wedge c) \vee(b \wedge d)) \wedge(\neg a \vee \neg c) \\
= & (\neg a \wedge((a \wedge c) \vee(a \wedge d) \vee(b \wedge c) \vee(b \wedge d))) \\
& (\neg c \wedge((a \wedge c) \vee(a \wedge d) \vee(b \wedge c) \vee(b \wedge d))) \\
= & (\neg a \wedge a \wedge c) \vee(\neg a \wedge a \wedge d) \vee(\neg a \wedge b \wedge c) \vee(\neg a \wedge b \wedge d) \vee \\
& (\neg c \wedge a \wedge c) \vee(\neg c \wedge a \wedge d) \vee(\neg c \wedge b \wedge c) \vee(\neg c \wedge b \wedge d) \\
= & (a \wedge \neg c \wedge d) \vee(\neg a \wedge b \wedge c) \vee(\neg a \wedge b \wedge d) \vee(b \wedge \neg c \wedge d)
\end{aligned}
$$

A.2. Example for Theorem 3

$$
\begin{aligned}
(a \vee b) & \mapsto((a) \vee(\neg a \wedge b)) \\
(a \vee b \vee c) & \mapsto((a) \vee(\neg a \wedge b) \vee(\neg a \wedge \neg b \wedge c))
\end{aligned}
$$

Partial Distributive Expansion

A.3. Example 1 for Theorem 4

Maximization principle: maximize conflicts for most frequent variables last.

$$
\begin{aligned}
& (a \vee b) \wedge(c \vee d) \wedge(\neg a \vee \neg c) \quad \mid p \vee q=(p \vee(\neg p \wedge q)) \\
& =(a \vee(\neg a \wedge b)) \wedge(c \vee(\neg c \wedge d)) \wedge(\neg a \vee(a \wedge \neg c)) \\
& \mid x_{1}:=(\neg a \wedge b), \\
& \mid x_{2}:=(\neg c \wedge d), \\
& \mid x_{3}:=(a \wedge \neg c) \\
& =\left(a \vee x_{1}\right) \wedge\left(c \vee x_{2}\right) \wedge\left(\neg a \vee x_{3}\right) \\
& =\left(\left(\left(a \vee x_{1}\right) \wedge c\right) \vee\left(\left(a \vee x_{1}\right) \wedge x_{2}\right)\right) \wedge\left(\neg a \vee x_{3}\right) \\
& =\left((a \wedge c) \vee\left(x_{1} \wedge c\right) \vee\left(a \wedge x_{2}\right) \vee\left(x_{1} \wedge x_{2}\right)\right) \wedge\left(\neg a \vee x_{3}\right) \\
& =\left(\left((a \wedge c) \vee\left(x_{1} \wedge c\right) \vee\left(a \wedge x_{2}\right) \vee\left(x_{1} \wedge x_{2}\right)\right) \wedge \neg a\right) \vee \\
& \left(\left((a \wedge c) \vee\left(x_{1} \wedge c\right) \vee\left(a \wedge x_{2}\right) \vee\left(x_{1} \wedge x_{2}\right)\right) \wedge x_{3}\right) \\
& =(a \wedge c \wedge \neg a) \vee\left(x_{1} \wedge c \wedge \neg a\right) \vee\left(a \wedge x_{2} \wedge \neg a\right) \vee \quad \mid p \wedge \neg p=F \\
& \left(x_{1} \wedge x_{2} \wedge \neg a\right) \vee\left(a \wedge c \wedge x_{3}\right) \vee\left(x_{1} \wedge c \wedge x_{3}\right) \vee \\
& \left(a \wedge x_{2} \wedge x_{3}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \\
& =\left(x_{1} \wedge c \wedge \neg a\right) \vee\left(x_{1} \wedge x_{2} \wedge \neg a\right) \vee\left(a \wedge c \wedge x_{3}\right) \vee \quad \mid x_{1}=(\neg a \wedge b) \\
& \left(x_{1} \wedge c \wedge x_{3}\right) \vee\left(a \wedge x_{2} \wedge x_{3}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \\
& =(\neg a \wedge b \wedge c \wedge \neg a) \vee\left(\neg a \wedge b \wedge x_{2} \wedge \neg a\right) \vee\left(a \wedge c \wedge x_{3}\right) \vee \quad \mid p \wedge p=p, \\
& \left(\neg a \wedge b \wedge c \wedge x_{3}\right) \vee\left(a \wedge x_{2} \wedge x_{3}\right) \vee\left(\neg a \wedge b \wedge x_{2} \wedge x_{3}\right) \quad \mid p \wedge \neg p=F \\
& =(\neg a \wedge b \wedge c) \vee\left(\neg a \wedge b \wedge x_{2}\right) \vee\left(a \wedge c \wedge x_{3}\right) \vee \quad \mid x_{2}=(\neg c \wedge d) \\
& \left(\neg a \wedge b \wedge c \wedge x_{3}\right) \vee\left(a \wedge x_{2} \wedge x_{3}\right) \vee\left(\neg a \wedge b \wedge x_{2} \wedge x_{3}\right) \\
& =(\neg a \wedge b \wedge c) \vee(\neg a \wedge b \wedge \neg c \wedge d) \vee \quad \mid x_{3}=(a \wedge \neg c) \\
& \left(a \wedge c \wedge x_{3}\right) \vee\left(\neg a \wedge b \wedge c \wedge x_{3}\right) \vee \\
& \left(a \wedge \neg c \wedge d \wedge x_{3}\right) \vee\left(\neg a \wedge b \wedge \neg c \wedge d \wedge x_{3}\right) \\
& =(\neg a \wedge b \wedge c) \vee(\neg a \wedge b \wedge \neg c \wedge d) \vee(a \wedge c \wedge a \wedge \neg c) \vee \\
& (\neg a \wedge b \wedge c \wedge a \wedge \neg c) \vee(a \wedge \neg c \wedge d \wedge a \wedge \neg c) \vee \\
& (\neg a \wedge b \wedge \neg c \wedge d \wedge a \wedge \neg c) \\
& =(a \wedge \neg c \wedge d) \vee(\neg a \wedge b \wedge c) \vee(\neg a \wedge b \wedge \neg c \wedge d)
\end{aligned}
$$

A.4. Example 2 for Theorem 4

Maximization principle: maximize conflicts for most frequent variables first.

$$
\begin{aligned}
& (a \vee b) \wedge(c \vee d) \wedge(\neg a \vee \neg c) \\
& =((a \wedge \neg b) \vee b) \wedge((c \wedge \neg d) \vee d) \wedge((\neg a \wedge c) \vee \neg c) \\
& \mid p \vee q=(p \vee(\neg p \wedge q)) \\
& \mid x_{1}:=(a \wedge \neg b), \\
& \mid x_{2}:=(c \wedge \neg d), \\
& \mid x_{3}:=(\neg a \wedge c) \\
& =\left(x_{1} \vee b\right) \wedge\left(x_{2} \vee d\right) \wedge\left(x_{3} \vee \neg c\right) \\
& =\left(\left(x_{1} \wedge\left(x_{2} \vee d\right)\right) \vee\left(b \wedge\left(x_{2} \vee d\right)\right)\right) \wedge\left(x_{3} \vee \neg c\right) \\
& =\left(\left(x_{1} \wedge x_{2}\right) \vee\left(x_{1} \wedge d\right) \vee\left(b \wedge x_{2}\right) \vee(b \wedge d)\right) \wedge\left(x_{3} \vee \neg c\right) \\
& =\left(x_{1} \wedge x_{2} \wedge\left(x_{3} \vee \neg c\right)\right) \vee\left(x_{1} \wedge d \wedge\left(x_{3} \vee \neg c\right)\right) \vee \\
& \left(b \wedge x_{2} \wedge\left(x_{3} \vee \neg c\right)\right) \vee\left(b \wedge d \wedge\left(x_{3} \vee \neg c\right)\right) \\
& =\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee\left(x_{1} \wedge x_{2} \wedge \neg c\right) \vee\left(x_{1} \wedge d \wedge x_{3}\right) \vee \quad \mid x_{1}=(a \wedge \neg b) \\
& \left(x_{1} \wedge d \wedge \neg c\right) \vee\left(b \wedge x_{2} \wedge x_{3}\right) \vee\left(b \wedge x_{2} \wedge \neg c\right) \vee \\
& \left(b \wedge d \wedge x_{3}\right) \vee(b \wedge d \wedge \neg c) \\
& =\left(a \wedge \neg b \wedge x_{2} \wedge x_{3}\right) \vee\left(a \wedge \neg b \wedge x_{2} \wedge \neg c\right) \vee \quad \mid x_{2}=(c \wedge \neg d) \\
& \left(a \wedge \neg b \wedge d \wedge x_{3}\right) \vee(a \wedge \neg b \wedge d \wedge \neg c) \vee \\
& \left(b \wedge x_{2} \wedge x_{3}\right) \vee\left(b \wedge x_{2} \wedge \neg c\right) \vee \\
& \left(b \wedge d \wedge x_{3}\right) \vee(b \wedge d \wedge \neg c) \\
& =\left(a \wedge \neg b \wedge c \wedge \neg d \wedge x_{3}\right) \vee(a \wedge \neg b \wedge c \wedge \neg d \wedge \neg c) \vee \quad \mid p \wedge \neg p=F \\
& \left(a \wedge \neg b \wedge d \wedge x_{3}\right) \vee(a \wedge \neg b \wedge d \wedge \neg c) \vee \\
& \left(b \wedge c \wedge \neg d \wedge x_{3}\right) \vee(b \wedge c \wedge \neg d \wedge \neg c) \vee \\
& \left(b \wedge d \wedge x_{3}\right) \vee(b \wedge d \wedge \neg c) \\
& =\left(a \wedge \neg b \wedge c \wedge \neg d \wedge x_{3}\right) \vee\left(a \wedge \neg b \wedge d \wedge x_{3}\right) \vee \quad \mid x_{3}=(\neg a \wedge c) \\
& (a \wedge \neg b \wedge d \wedge \neg c) \vee\left(b \wedge c \wedge \neg d \wedge x_{3}\right) \vee \\
& \left(b \wedge d \wedge x_{3}\right) \vee(b \wedge d \wedge \neg c) \\
& \begin{array}{rlrl}
= & (a \wedge \neg b \wedge c \wedge \neg d \wedge \neg a \wedge c) \vee(a \wedge \neg b \wedge d \wedge \neg a \wedge c) \vee & \mid p \wedge p=p, \\
& (a \wedge \neg b \wedge d \wedge \neg c) \vee(b \wedge c \wedge \neg d \wedge \neg a \wedge c) \vee & & \mid p \wedge \neg p=F
\end{array} \\
& (b \wedge d \wedge \neg a \wedge c) \vee(b \wedge d \wedge \neg c) \\
& =(a \wedge \neg b \wedge \neg c \wedge d) \vee(\neg a \wedge b \wedge c \wedge d) \vee \\
& (\neg a \wedge b \wedge c \wedge \neg d) \vee(b \wedge \neg c \wedge d)
\end{aligned}
$$

A.5. Summary for Verification of Examples

BCF from example 1:

$(a \wedge \neg c \wedge d) \vee(\neg a \wedge b \wedge c) \vee(\neg a \wedge b \wedge d) \vee(b \wedge \neg c \wedge d)$

DNF from example 1 for theorem 4:
$(a \wedge \neg c \wedge d) \vee(\neg a \wedge b \wedge c) \vee(\neg a \wedge b \wedge \neg c \wedge d)$

DNF from example 2 for theorem 4:
$(a \wedge \neg b \wedge \neg c \wedge d) \vee(\neg a \wedge b \wedge c \wedge d) \vee(\neg a \wedge b \wedge c \wedge \neg d) \vee(b \wedge \neg c \wedge d)$

Solutions for Examples:

$$
\begin{aligned}
& (a \wedge b \wedge \neg c \wedge d) \vee \\
& (a \wedge \neg b \wedge \neg c \wedge d) \vee \\
& (\neg a \wedge b \wedge c \wedge d) \vee \\
& (\neg a \wedge b \wedge c \wedge \neg d) \vee \\
& (\neg a \wedge b \wedge \neg c \wedge d)
\end{aligned}
$$

Appendix B. Detailed Summary of Experiments

Experiments with 100 randomly generated 3-CNF formulas (genAlea, 2004) with 40 variables and 171 clauses[ws-exp] were conducted and all problems except one were solved trivially in polynomial time with a PDE based algorithm alone.

The original encoding is denoted as "CNF". The problem was further re-encoded as selection problem in direct encoding without conflict maximization, denoted as "Direct enc.".

Two versions of conflict maximization were produced. The first, "Cfl max.", was re-encoded with direct encoding and without redundancy removal. The second, "Cfl red.", was re-encoded with direct encoding after redundancy removal.

The common parameters for all solvers are the number of variables and clauses of each experiment.

The number of variables is necessarily constant for "CNF" (40), "Direct enc." (513), and "Cfl max." (513). Since redundancy removal produces varying results, the number of variables necessarily varies for "Cfl red." (avg. 86).

The number of clauses is constant for CNF (171). The number of clauses for the versions in direct encoding depends on the number of conflicting literals between clauses. Therefore it is necessarily higher than for CNF. The average number of clauses for "Cfl max." is 97905, for "Cfl red." 2934, and for "Direct enc." 2309.

The raw number of decisions is used as a measure how hard the problem appears to a CDCL SAT-solver (lingeling).

CNF			Direct enc.				Cfl max.				Cfl red.		
Var	Cls	Dec/a	Var	Cls/a	Dec/a	Var	Cls/a	Dec/a	Var/a	Cls/a	Dec/a		
40	171	30	513	2309	236	513	97905	2	86	2934	2		

Solver lingeling, Var $=$ variables, $\mathrm{Cls}=$ clauses, $\mathrm{Dec}=$ Decisions, $/ \mathrm{a}=$ average

Leaving out "Direct enc." provides a more detailed view of the CNF and conflict maximization decisions.

For the lookahead solver march_rw, the LookAheadCount is used as measure for the problem hardness.

CNF			Direct enc.				Cfl max.				Cfl red.		
Var	Cls	LA/a	Var	Cls/a	LA/a	Var	Cls/a	LA/a	Var/a	Cls/a	LA/a		
40	171	122	513	2309	10720	513	97905	365	86	2934	220		

Solver march_rw, Var $=$ variables, Cls $=$ clauses, $\mathrm{LA}=$ LookAheadCount, $/ \mathrm{a}=$ average

More detailed view without "Direct enc.":

References

[w3s]	Various authors, Boolean satisfiability problem Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/Boolean_ satisfiability_problem\#3-satisfiability, accessed 2013-12-03.
[wfc]	Various authors, Problem of future contingents, Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/Future_contingent, accessed 2013-12-07.
[bcf]	Various authors, Blake canonical form - Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/Blake_canonical_ form, accessed 2013-12-02.
[BLAKE]	Blake, Archie, Canonical expressions in Boolean algebra, University of Chicago, 1938.
[BROWN]	Brown, Frank Markham, Boolean Reasoning: The Logic of Boolean Equations, Kluwer Academic Publishers, Boston, 1990. Second edition, Dover Publications, Mineola, 2003. zbMATH review.
[HOS]	A. Biere, M. Heule, H. van Maaren, T. Walsh, Handbook of Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Applications, IOS Press Amsterdam, The Netherlands, 2009, ISBN:1586039296 9781586039295
[MOUNT]	David M. Mount, CMSC 451 Lecture Notes, Fall 2012, http://www.cs.umd.edu/class/fall2012/cmsc451/ Lects/cmsc451-lects.pdf, accessed 2013-10-03.
[ws-exp]	Wolfgang Scherer, CDCL and Direct Encoding. http://sw-amt.ws/satoku/doc/doc-experiments/ README. html, accessed 2013-12-07.

