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Generalization of CNF and Consequences for DNF

of Implicants under Distributive Expansion

Wolfgang Scherer Wolfgang.Scherer@gmx.de

Abstract

The conjunctive normal form CNF, is generalized to a conjunction of disjunctive
normal form clauses CDF, by dropping the restrictions for syllogistic formulas. It
is shown, that this can lead to more desirable results for solving some satisfiability
and counting problems. Distributive expansion of logical formulae is shown to have
properties different from distributive expansion of arithmetic formulae and can be
broken down into polynomial time and exponential time parts. The polynomial
time portion can be used to develop systematic algorithms which can neither be
provided by mathematical logic nor plain graph theory.
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1. CNF, Syllogistic Formulas, BCF

This article is retrofitted onto the work of Blake, Canonical expressions in Boolean
algebra[BLAKE] as outlined in Boolean Reasoning: The Logic of Boolean Equa-
tions [BROWN, chapter 4 and appendix A].

Obviously, the restrictions for a conjunctive normal form CNF — namely removal
of duplicate literals and elimination of clauses with contradictory literals — have
been loosened over time. However, this seems to have been a process of ad hoc
reasoning[w3s].

Since Blake’s proof depends on the notion of syllogistic formulas, the original defini-
tion of a CNF is kept fully intact, as it guarantees that a CNF is syllogistic[BROWN,
chapter 4.6]. The restrictions are lifted separately by generalization.

Theorem 1. Distributive expansion of a CNF formula Pc (multiplication of a product
of sums, POS) results in a formula Pd in disjunctive normal form DNF (sum of
products, SOP) defining the set of all prime implicants Ip for Pc. Pd is called a Blake
canonical form BCF[bcf].

The proof is given in [BROWN, theorem A.2.1].

2. From CNF to a Conjunction of DNF Clauses

As is pointed out in [BROWN, section 4.6.3], a syllogistic formula or a BCF are
not necessarily always desired, since they may consist of a considerable amount of
redundant prime implicates/implicants. However, no alternative method involving
distributive expansion is given.
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Partial Distributive Expansion

For an informal exploration by example, let

m0 = ( p ∨ q ∨ r),
m1 = (¬p ∧ q),
m2 = (¬p ∧ ¬q ∧ r),
m3 = ( p ∨m1 ∨m2),
m4 = ( p ∧ s),
m5 = ( p ∧ ¬s ∧ t).

The following truth table shows that a disjunctive clause, mo = ( p ∨ q ∨ r),
of a CNF formula allows the maximum number of conjunctions during distributive
expansion with another clause containing the literal p (see columns (p ∧ q), (p ∧ r)).
It also shows, that a slight variation in the terms of a disjunctive clause, m3 =
(p ∨ (¬p ∧ q) ∨ (¬p ∧ ¬q ∧ r)), minimizes the number of possible conjunctions during
distributive expansion (see columns (p ∧m1), (p ∧m2)).

p q r m0 p m1 m2 m3 p ∧ q p ∧m1 p ∧ r p ∧m2

0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1 0 0 0 0
0 1 0 1 0 1 0 1 0 0 0 0
0 1 1 1 0 1 0 1 0 0 0 0
1 0 0 1 1 0 0 1 0 0 0 0
1 0 1 1 1 0 0 1 0 0 1 0
1 1 0 1 1 0 0 1 1 0 0 0
1 1 1 1 1 0 0 1 1 0 1 0

While m0 = (p ∨ q ∨ r) and m3 = (p ∨ (¬p ∧ q) ∨ (¬p ∧ ¬q ∧ r)) are logically
equivalent, distributive expansion with another clause containing p should result in
fewer conjunctions for m3 than for m0.

In example 1, normal distributive expansion of a CNF formula P produces the set of
all prime implicants for P :

P = ( p ∨ q ∨ r) ∧ (¬p ∨ s ∨ t)
= ( p ∧ (¬p ∨ s ∨ t)) ∨ ( q ∧ (¬p ∨ s ∨ t)) ∨

( r ∧ (¬p ∨ s ∨ t))
= ( p ∧ ¬p) ∨ ( p ∧ s) ∨ ( p ∧ t) ∨ ( q ∧ ¬p) ∨

( q ∧ s) ∨ ( q ∧ t) ∨ ( r ∧ ¬p) ∨ ( r ∧ s) ∨
( r ∧ t)

= ( p ∧ s) ∨ ( p ∧ t) ∨ ( q ∧ ¬p) ∨ ( q ∧ s) ∨
( q ∧ t) ∨ ( r ∧ ¬p) ∨ ( r ∧ s) ∨ ( r ∧ t)
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In example 2, distributive expansion of problem Pm (logically equivalent to P ) pro-
duces the structurally equivalent CNF problem P by expansion and simplification of
innermost clauses first:

Pm = ( p ∨ (¬p ∧ q) ∨ (¬p ∧ ¬q ∧ r)) ∧
(¬p ∨ ( p ∧ s) ∨ ( p ∧ ¬s ∧ t))

= (( p ∨ ¬p) ∧ ( p ∨ q)) ∨ (¬p ∧ ¬q ∧ r)) ∧
((¬p ∨ p) ∧ (¬p ∨ s)) ∨ ( p ∧ ¬s ∧ t))

= ( p ∨ q ∨ (¬p ∧ ¬q ∧ r)) ∧
(¬p ∨ s ∨ ( p ∧ ¬s ∧ t))

= ( p ∨ q ∨ ¬p) ∧ ( p ∨ q ∨ ¬q) ∧ ( p ∨ q ∨ r) ∧
(¬p ∨ s ∨ p) ∧ (¬p ∨ s ∨ ¬s) ∧ (¬p ∨ s ∨ t)

= ( p ∨ q ∨ r) ∧ (¬p ∨ s ∨ t)

Further distributive expansion leads to the same result as example 1. This result
is disappointing and probably the reason, why distributive expansion is intuitively
categorized as purely exponential method. But the next example shows that there is
a remedy.

In example 3, distributive expansion of Pm (logically equivalent to P ), but with
expansion and simplification of outermost clauses first, produces a set of implicants,
which is structurally different from the set of prime implicants (some steps omitted
for brevity):

Pm = ( p ∨m1 ∨m2) ∧ (¬p ∨m4 ∨m5)
= ( p ∧ (¬p ∨m4 ∨m5)) ∨ (m1 ∧ (¬p ∨m4 ∨m5)) ∨

(m2 ∧ (¬p ∨m4 ∨m5))
= ( p ∧ ¬p) ∨ ( p ∧m4) ∨ ( p ∧m5) ∨ (m1 ∧ ¬p) ∨

(m1 ∧m4) ∨ (m1 ∧m5) ∨ (m2 ∧ ¬p) ∨ (m2 ∧m4) ∨
(m2 ∧m5)

= ( p ∧m4) ∨ ( p ∧m5) ∨ (m1 ∧ ¬p) ∨ (m1 ∧m4) ∨ |m1 = ¬p ∧ q
(m1 ∧m5) ∨ (m2 ∧ ¬p) ∨ (m2 ∧m4) ∨ (m2 ∧m5)

= ( p ∧m4) ∨ ( p ∧m5) ∨ (¬p ∧ q) ∨ (¬p ∧ q ∧m4) ∨ |m4 = p ∧ s
(¬p ∧ q ∧m5) ∨ (m2 ∧ ¬p) ∨ (m2 ∧m4) ∨ (m2 ∧m5)

= ( p ∧ s) ∨ ( p ∧m5) ∨ (¬p ∧ q) ∨ |m2 = ¬p ∧ ¬q ∧ r
(¬p ∧ q ∧m5) ∨ (m2 ∧ ¬p) ∨
(m2 ∧ p ∧ s) ∨ (m2 ∧m5)

= ( p ∧ s) ∨ ( p ∧m5) ∨ (¬p ∧ q) ∨ (¬p ∧ q ∧m5) ∨ |m5 = p ∧ ¬s ∧ t
(¬p ∧ ¬q ∧ r) ∨ (¬p ∧ ¬q ∧ r ∧m5)

= ( p ∧ s) ∨ ( p ∧ ¬s ∧ t) ∨ (¬p ∧ q) ∨ (¬p ∧ ¬q ∧ r)
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The results are repeated to make comparison easier:

( p ∨ q ∨ r) ∧ (¬p ∨ s ∨ t)
= ( p ∧ s) ∨ ( p ∧ t) ∨ ( q ∧ ¬p) ∨ ( q ∧ s) ∨

( q ∧ t) ∨ ( r ∧ ¬p) ∨ ( r ∧ s) ∨ ( r ∧ t)

( p ∨ (¬p ∧ q) ∨ (¬p ∧ ¬q ∧ r)) ∧
(¬p ∨ ( p ∧ s) ∨ ( p ∧ ¬s ∧ t))

= ( p ∨m1 ∨m2) ∧ (¬p ∨m4 ∨m5)
= ( p ∧ s) ∨ ( p ∧ ¬s ∧ t) ∨ (¬p ∧ q) ∨ (¬p ∧ ¬q ∧ r)

The results are logically equivalent, since they were both obtained by algebraic trans-
formation. However they differ structurally in the number of conjunctive clauses and
the properties of the clauses in relation to each other.

The result from example 3 provides the incentive for a generalization of CNF formulas.

A generalized conjunction of DNF clauses is called CDF to avoid clashes with the
abbreviation for a canoncial disjunctive normal form CDNF. It also signifies, that
there is no intention of constructing artificial “normal” or “canonical” forms, which
are aesthetically nice, but quite impractical for, e.g., counting the number of satisfying
total assignments.

While the definition of a DNF holds, the requirements for a CNF are lifted. This is
important, when all conjunctions s of a DNF S consist of a single literal and therefore
S degrades to a simple disjunction with plain literals of atomic variables. There is
explicitely no requirement to eliminate duplicate literals in a degraded DNF. Variables
can also appear both negated and unnegated in a degraded DNF.

Any CNF formula is therefore also a CDF formula, whereas not all CDF formulas are
proper CNF formulas.

Theorem 2. Any CDF formula P can be transformed to an equisatisfiable CNF
formula Ps, which is syllogistic.

Proof. Any CDF formula P can be trivially converted to a selection problem Ps

by assigning a new variable vij to each conjunction sij of each DNF Si of P, i =
(1, 2, . . . , |P |), j = (1, 2, . . . , |Si|). A disjunction of all unnegated variables vij , (vi1 ∨
vi2 ∨ . . .∨ vi|Si|

), is added to Ps for each DNF Si (at-least-one clauses). For each pair
of variables (vij , vih), j 6= h, h = (1, 2, . . . , |Si|), a disjunction (¬vij ∨ ¬vih) is added
to Ps (at-most-one clauses). For each conflicting pair of conjunctions (sij , sfg), i 6=
f, f = (1, 2, . . . , |P |), g = (1, 2, . . . , |Sf |) a disjunction (¬vij ∨ ¬vfg) is added to Ps

(conflict clauses)[HOS, chapter 2, direct encoding].

Obviously Ps is syllogistic, since there are either only negated or only unnegated
variables in each clause[BROWN, chapter 4.6].
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Note, that the weaker restrictions of a CDF formula P allow to extend P by adding all
propositional variables p appearing in P , represented by disjunctions (p∨¬p) for each
variable. The corresponding selection problem Ps then carries its own translation map
for the original set of variables. As a courtesy, SAT solvers will solve the selection
problem for both the variables of the selection problem and the variables of the original
CDF problem and a tedious mapping process is not necessary.

Since a selection problem Ps is again a CDF, a malicious encoder can boost the virtual
hardness of any problem by applying theorem 2 any number of times.

3. Conflict Maximization

The term conflict exclusively refers to opposing literals in clauses and should not be
confused with the term conflict from the context of conflict driven clause learning
CDCL.

While a CDF is not restricted to special DNF clauses, the most interesting in the
context of this article is the set E of DNF clauses which are logically equivalent to a
disjunction of literals (aka. regular CNF clause).

The most prominent members of E are DNF clauses, where all conjunctions have a
maximum of conflicting literals.

Theorem 3. If we transform a disjunctive clause Sd with k literals to a disjunctive
clause Sm of conjunctions by replacing each literal li, i = (1, ..., k) with the conjunction
(¬l1 ∧ ... ∧ ¬li−1 ∧ li), then Sm will be logically equivalent to Sd. The clause Sm is
called a clause with maximized conflicts.

Proof. Distributive expansion of Sm shows the logical equivalence to the unmaximized
clause Sd. E.g.:

((p) ∨ (¬p ∧ q))
= (p ∨ ¬p) ∧ (p ∨ q)
= (p ∨ q)

Theorem 4. Distributive expansion of a CDF formula with maximized conflicts Pm,
results in a DNF formula Pu defining a set of (not necessarily prime) implicants
Iu for Pm, if expansion and simplification of outermost clauses is performed strictly
before innermost clauses. The implicants from Iu cover all possible satisfying total
assignments for Pm.

Proof. Since the order of expansion and simplification does not change the logical
function represented by the expansion, the result Ip from theorem 1 must be logically
equivalent to Iu. Since Ip covers all satisfying total assignments, by extension Iu must
also cover all satisfying total assignments.
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Note, that the order of expansion and simplification is significant. If innermost clauses
are simplified first, Pm degrades to a regular CNF formula (as shown in example 2)
and the result of distributive expansion is the set of all prime implicants.

Hypothesis 5. The implicants Iu established by theorem 4 are unique, in that no
implicant Mx ∈ Iu covers the satisfying total assignments of any other implicant
My ∈ Iu, x 6= y;x, y ∈ {1, 2, . . . , |Iu|}.

The proof is omitted here, since it becomes much simpler in the generalized theory
of the satoku matrix. However, it is still mentioned, since uniqueness of implicants is
very convenient, if the number of satisfying total assignments must be counted. This
is much easier with the set of implicants Iu than with the set of prime implicants Ip
from theorem 1, where duplicate total assignments have to be accounted for.

4. Partial Distributive Expansion

Now that we have established that distributive expansion of logical formulae has more
than just trivial aspects, so further analysis of its properties is warranted.

Since partial distributive expansion PDE is based on a computer algorithm, indices
are shifted to programming language conventions to avoid translation errors between
the program source code and the description:
Disjunctions S are labeled Si, i = (0, 1, . . . ,m− 1),m = |P |.
Conjunctions s are labeled sij , j = (0, 1, . . . , |Si| − 1).
Dependencies between all conjunctions of disjunctions Si and Sf , f = (0, 1, . . . ,m−1)
are denoted as Si,f .
Dependencies between conjunctions sij and sfg , g = (0, 1, . . . , |Sf |−1) are denoted as
row, column pairs sij ,fg .
Literals lij of CNF clauses Si relate to the conjunction dependencies sij ,ij in the PDE
matrix.

Partial distributive expansion PDE is designed as a systematic process to refine partial
assignments incrementally without arbitrary decisions. Each conjunction sij of a DNF
Si of a CDF P is interpreted as a partial assignment for P . This is motivated by the
fact that distributive expansion produces a set of implicants I for P . Each implicant
of I therefore necessarily refines one or more conjunctions sij .

It turns out, that neither implication graphs nor adjacency matrices nor clause-
variable matrices[HOS, section 11.2], let alone the principles of decision algorithms
and CDLC, are sufficient to describe all mechanisms of PDE efficiently. The closest
representation for PDE is an adjacency matrix. However, an adjacency matrix lacks
the necessary properties to systematically examine the consequences of dependencies
between disjunctions of conjunctions (clause constraints).
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The PDE matrix is itself only a stepping stone to the generalized satoku matrix. Its
sole purpose is to illustrate the relation between a CDF problem with clauses and
variables and the fully abstracted satoku matrix, where the notion of a substantial
difference between clauses and variables becomes meaningless. Therefore, only an
informal presentation by example is included, postponing the precise formalization to
the satoku matrix.

Starting with a propositional CNF formula P with m disjunctive clauses Ci of size k,
m = |P |, i = 0 . . . (m− 1), k = |Ci|:

(¬a ∨ ¬b) ∧
(¬a ∨ d) ∧
( a ∨ b) ∧
( a ∨ c)

Convert each disjunction Ci of literals lij to a disjunction Si of conjunctions sij ,
j = 0 . . . (|Ci| − 1):

((¬a) ∨ (¬b)) ∧
((¬a) ∨ ( d)) ∧
(( a) ∨ ( b)) ∧
(( a) ∨ ( c))

As visual hint, spread each disjunction Si over two lines:

(( ¬a ) ∨
( ¬b )) ∧

(( ¬a ) ∨
( d )) ∧

(( a ) ∨
( b )) ∧

(( a ) ∨
( c ))

Extend each conjunction sij with truth values T (signifying independency) to a length

of
[P ]−1∑
i=0

|Si| in the following manner:

(( ¬a ∧ T ∧ T ∧ T ∧ T ∧ T ∧ T ∧ T ) ∨
( T ∧ ¬b ∧ T ∧ T ∧ T ∧ T ∧ T ∧ T )) ∧

(( T ∧ T ∧ ¬a ∧ T ∧ T ∧ T ∧ T ∧ T ) ∨
( T ∧ T ∧ T ∧ d ∧ T ∧ T ∧ T ∧ T )) ∧

(( T ∧ T ∧ T ∧ T ∧ a ∧ T ∧ T ∧ T ) ∨
( T ∧ T ∧ T ∧ T ∧ T ∧ b ∧ T ∧ T )) ∧

(( T ∧ T ∧ T ∧ T ∧ T ∧ T ∧ a ∧ T ) ∨
( T ∧ T ∧ T ∧ T ∧ T ∧ T ∧ T ∧ c ))
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Partial Distributive Expansion

The PDE matrix is constructed to fully represent this structure with additional ver-
tical lines to denote clause limits.

s00 ¬a
s01 ¬b
s10 ¬a
s11 d
s20 a
s21 b
s30 a
s31 c

4.1 Requirement Identification

The PDE matrix can also be interpreted as a representation of the selection problem
for P , where each row sij shows the literals that must become true, when row sij
is selected from clause Si. It is suitable to discuss requirement propagation in this
context.

Following the consequences of the selection problem, observe, that if s00 is eventually
selected, then s20 can no longer be selected, because literal ¬a at position s00,00

conflicts with literal a at position s20,20 (x), therefore, s21 must then be selected to
preserve satisfiability.

It makes no difference, whether this required selection is made later as a matter of
circumstances, or if it is promised in advance by refining partial assignment s00 with
literal b at position s00,21 :

s00 ¬a x b
s01 ¬b
s10 ¬a
s11 d
s20 a
s21 b
s30 a
s31 c
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By analogy, the same is true for selection s20 and the conflicting selection at s00 (x):

s00 ¬a b
s01 ¬b
s10 ¬a
s11 d
s20 x ¬b a
s21 b
s30 a
s31 c

Distributive expansion of clauses S0, S2 shows, that this is exactly what will happen:

(¬a ∨ ¬b) ∧ (a ∨ b)
= ((¬a ∧ (a ∨ b)) ∨ (¬b ∧ (a ∨ b)))
= (¬a ∧ a) ∨ (¬a ∧ b) ∨ (¬b ∧ a) ∨ (¬b ∧ b)
= (¬a ∧ b) ∨ (¬b ∧ a)

However, the result was obtained without the potentially exponential number of in-
termediate results of distributive expansion.

4.2 Requirement Propagation Round 1

Proceeding further, the PDE matrix is transformed to:

s00 ¬a b c
s01 ¬b a
s10 ¬a b c
s11 d
s20 ¬b d a
s21 ¬a b
s30 ¬b d a
s31 c

Observe, that partial assignment s01 , which requires partial assignment s20 is no
longer consistent, since s20 has been refined with d from s11,11 during the first round
of partial distributive expansion.
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4.3 Requirement Propagation Round 2

It is therefore necessary to enter another round of requirement propagation and refine
s01 with d at position s01,11 also:

s00 ¬a b c
s01 ¬b d a x

s10 ¬a b c
s11 d
s20 ¬b d a
s21 ¬a b
s30 ¬b d a
s31 c

Following all consequences, the PDE matrix is transformed to:

s00 ¬a b c
s01 ¬b d a
s10 ¬a ¬a b c
s11 d
s20 ¬b d a
s21 ¬a b c
s30 ¬b d a a
s31 c

It is obvious, that requirement propagation must terminate and has a strictly poly-
nomial worst case running time. A more detailed rationale is postponed to the de-
scription of the satoku matrix.

4.4 Translate PDE to CDF

Translating the PDE matrix to a CDF formula Pt renders a conjunction of disjunctions
Si of partial assignments sij :

((¬a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ d)) ∧
((¬a ∧ b ∧ c) ∨ (d)) ∧
((a ∧ ¬b ∧ d) ∨ (¬a ∧ b ∧ c)) ∧
((a ∧ ¬b ∧ d) ∨ (c)).

After removal of redundant claues, Pt reduces further to:

((¬a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ d)) ∧
((¬a ∧ b ∧ c) ∨ (d)) ∧
((a ∧ ¬b ∧ d) ∨ (c)).
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Induction over the full truth table shows that P and Pt are logically equivalent, which
is necessarily so.

The partial assignments (a ∧ ¬b ∧ d) and (¬a ∧ b ∧ c) are also implicants for P and
satisfiability of P is asserted without the need to perform the final exponential step
of distributive expansion.

4.5 PDE with Conflict Maximization

Applying theorem 3 to P produces the CDF Pm:

((¬a) ∨ ( a ∧ ¬b)) ∧
((¬a) ∨ ( a ∧ d)) ∧
(( a) ∨ (¬a ∧ b)) ∧
(( a) ∨ (¬a ∧ c))

The corresponding PDE matrix presents as:

s00 ¬a
s01 a ∧ ¬b
s10 ¬a
s11 a ∧ d
s20 a
s21 ¬a ∧ b
s30 a
s31 ¬a ∧ c

Requirement propagation transforms the PDE matrix to:

s00 ¬a ¬a ¬a ∧ b ¬a ∧ c
s01 a ∧ ¬b a ∧ d a a
s10 ¬a ¬a ¬a ∧ b ¬a ∧ c
s11 a ∧ ¬b a ∧ d a a
s20 a ∧ ¬b a ∧ d a a
s21 ¬a ¬a ¬a ∧ b ¬a ∧ c
s30 a ∧ ¬b a ∧ d a a
s31 ¬a ¬a ¬a ∧ b ¬a ∧ c

Translation to a CDF Pu results in:

((¬a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ d)) ∧
((¬a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ d)) ∧
((a ∧ ¬b ∧ d) ∨ (¬a ∧ b ∧ c)) ∧
((a ∧ ¬b ∧ d) ∨ (¬a ∧ b ∧ c))
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After removal of redundant clauses, Pu presents a DNF of implicants:

(a ∧ ¬b ∧ d) ∨ (¬a ∧ b ∧ c)

This shows, that the PDE matrix is sufficient to process formulas according to theo-
rem 4 by inherently avoiding early simplification of innermost clauses.

4.6 Rationale for PDE

It has been shown, that it is possible to efficiently transform the formula P :

(¬a ∨ ¬b) ∧ (¬a ∨ d) ∧
( a ∨ b) ∧ ( a ∨ c)

to the logically equivalent formula Pu:

(a ∧ ¬b ∧ d) ∨ (¬a ∧ b ∧ c)

without any exponential backtracking and without any exponential distributive ex-
pansion.

5. Experiments

To show that PDE is useful for more than just trivial 2-clause problems, experi-
ments with 100 randomly generated 3-CNF formulas having 40 variables and 171
clauses[ws-exp] were conducted. All problems, except one were solved trivially in
polynomial time with a PDE based algorithm alone.

See appendix B for a detailed summary of the experiments.

Further experiments with different versions of transformations according to theorem 2
(direct encoding) show that DPLL/CDCL solvers suffer significantly from the virtual
increase in hardness by the increased number of clauses and variables, when conflict
maximization is not applied.

CNF Direct enc. Cfl max. Cfl red.
Var Cls Dec/a Var Cls/a Dec/a Var Cls/a Dec/a Var/a Cls/a Dec/a

40 171 30 513 2309 236 513 97905 2 86 2934 2

Solver lingeling, Var = variables, Cls = clauses, Dec = Decisions, /a = average

A surprising result, which seems counter-intuitive at first is the fact, that conflict
maximization with subsequent transformation to a selection problem significantly
reduces the number of decisions needed by DPLL/CDCL solvers (even below the

13
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number of decisions needed for the original CNF encoding in more than 90 out of 100
cases).

The average number of clauses (97905/2934) for the selection problems with conflict
maximization is much higher than for the original CNF encoding (171) and also
higher than the average number of clauses for the selection problem without conflict
maximization (2309).

The results imply that there is no correlation between the hardness of a problem and
the raw number of variables and clauses at all.

For the lookahead solver march rw, the results indicate a somewhat proportional
increase in virtual hardness as expected. I.e., there is no gain through conflict maxi-
mization in relation to the original CNF encoding. However, the decrease in virtual
hardness in relation to direct encoding without conflict maximization is also signifi-
cantly high.

CNF Direct enc. Cfl max. Cfl red.
Var Cls LA/a Var Cls/a LA/a Var Cls/a LA/a Var/a Cls/a LA/a

40 171 122 513 2309 10720 513 97905 365 86 2934 220

Solver march rw, Var = variables, Cls = clauses, LA = LookAheadCount, /a = average

These results as well imply that there is no correlation between the hardness of a
propositional problem and the raw number of variables and clauses.

A consistent test for a local search solver (WalkSat) could not be conducted, since
many problems could no longer be solved in reasonable time after transformation to
a selection problem.

6. Conclusion

It is obvious, that the PDE method has its limits and certainly does not generalize to
an entirely polynomial algorithm for distributive expansion (sadly, there is no magic
in logic).

However, the experiments with the effects of PDE on SAT solvers alone provide
enough incentive to study the consequences of this method further.

The analysis shows, that the current models of logic, namely graph theory (lacking
full clause constraints and dynamic clause operations) and the theory of decision prob-
lems (working on a sparse one-dimensional representation of a propositional formula)
cannot efficiently produce the results of partial distributive expansion.

Theorem 2 shows vividly, that the notion of normal forms and fixed sets of variables
is illusionary. There is not even a logically sound argument for generalized equi-
satisfiability implying any kind of nice (aka. algebraic) functional relation between
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one set of variables and another set of variables, although both correctly define the
dependencies of a problem with the same core clause structure.

The fact that there are infinitely many versions of the exact same problem — where
one version should not be any harder to solve than any other version no matter how
many additional 2-literal clauses or variables (which are only special cases of 2-literal
clauses) are added — leads to the conclusion that a correct model of logic must focus
on the structural properties of clauses alone.

Ultimately, the number of 2-literal clauses must not have any substantial influence
on the running time of a solver algorithm. Therefore, a correct model of logic for
satisfiability problems must also solve 2-SAT problems in polynomial time (which
DPLL/CDCL does not) and it must deliver consistent explanations for the hardness
of a problem (which graph theory does not, not even for 2-SAT problems).

PDE and conflict maximization are only the most basic principles of an (extremely
simple) generalized theory, derived directly from logic itself, which is capable of mod-
eling the intrinsic polymorphy and self-referentiality of logic, offering both a method
to implicitely solve 2-SAT problems efficiently and consistent explanations for the
hardness of satisfiability problems.

However, the popular belief and common expectation that the description should
somehow be meaningfully produced with the incomplete concepts of graph theory
and decision problems seems quite outlandish.

Citing the Handbook of Satisfiability :

“In short, CNF modelling [sic] is an art and we must often proceed by
intuition and experimentation”[HOS, section 2.5],

the whole point of this article can be summarized as:

CDF modeling should not be an art, and it does not have to be. And
once it no longer is, propositional problems are modeled correctly.

15
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Appendix A. Examples

Examples for theorems are given to illustrate the different consequences.

A.1. Example for Theorem 1

(a ∨ b) ∧ (c ∨ d) ∧ (¬a ∨ ¬c)
= ((a ∧ c) ∨ (a ∧ d) ∨ (b ∧ c) ∨ (b ∧ d)) ∧ (¬a ∨ ¬c)
= (¬a ∧ ((a ∧ c) ∨ (a ∧ d) ∨ (b ∧ c) ∨ (b ∧ d)))

(¬c ∧ ((a ∧ c) ∨ (a ∧ d) ∨ (b ∧ c) ∨ (b ∧ d)))
= (¬a ∧ a ∧ c) ∨ (¬a ∧ a ∧ d) ∨ (¬a ∧ b ∧ c) ∨ (¬a ∧ b ∧ d)∨

(¬c ∧ a ∧ c) ∨ (¬c ∧ a ∧ d) ∨ (¬c ∧ b ∧ c) ∨ (¬c ∧ b ∧ d)
= (a ∧ ¬c ∧ d) ∨ (¬a ∧ b ∧ c) ∨ (¬a ∧ b ∧ d) ∨ (b ∧ ¬c ∧ d)

A.2. Example for Theorem 3

(a ∨ b) 7→ ((a) ∨ (¬a ∧ b))
(a ∨ b ∨ c) 7→ ((a) ∨ (¬a ∧ b) ∨ (¬a ∧ ¬b ∧ c))

16
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A.3. Example 1 for Theorem 4

Maximization principle: maximize conflicts for most frequent variables last.

(a ∨ b) ∧ (c ∨ d) ∧ (¬a ∨ ¬c) | p ∨ q = (p ∨ (¬p ∧ q))
= (a ∨ (¬a ∧ b)) ∧ (c ∨ (¬c ∧ d)) ∧ (¬a ∨ (a ∧ ¬c)) | x1 := (¬a ∧ b),

| x2 := (¬c ∧ d),
| x3 := (a ∧ ¬c)

= (a ∨ x1) ∧ (c ∨ x2) ∧ (¬a ∨ x3)
= (((a ∨ x1) ∧ c) ∨ ((a ∨ x1) ∧ x2)) ∧ (¬a ∨ x3)
= ((a ∧ c) ∨ (x1 ∧ c) ∨ (a ∧ x2) ∨ (x1 ∧ x2)) ∧ (¬a ∨ x3)
= (((a ∧ c) ∨ (x1 ∧ c) ∨ (a ∧ x2) ∨ (x1 ∧ x2)) ∧ ¬a) ∨

(((a ∧ c) ∨ (x1 ∧ c) ∨ (a ∧ x2) ∨ (x1 ∧ x2)) ∧ x3)
= (a ∧ c ∧ ¬a) ∨ (x1 ∧ c ∧ ¬a) ∨ (a ∧ x2 ∧ ¬a) ∨ | p ∧ ¬p = F

(x1 ∧ x2 ∧ ¬a) ∨ (a ∧ c ∧ x3) ∨ (x1 ∧ c ∧ x3) ∨
(a ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3)

= (x1 ∧ c ∧ ¬a) ∨ (x1 ∧ x2 ∧ ¬a) ∨ (a ∧ c ∧ x3) ∨ | x1 = (¬a ∧ b)
(x1 ∧ c ∧ x3) ∨ (a ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3)

= (¬a ∧ b ∧ c ∧ ¬a) ∨ (¬a ∧ b ∧ x2 ∧ ¬a) ∨ (a ∧ c ∧ x3) ∨ | p ∧ p = p,
(¬a ∧ b ∧ c ∧ x3) ∨ (a ∧ x2 ∧ x3) ∨ (¬a ∧ b ∧ x2 ∧ x3) | p ∧ ¬p = F

= (¬a ∧ b ∧ c) ∨ (¬a ∧ b ∧ x2) ∨ (a ∧ c ∧ x3) ∨ | x2 = (¬c ∧ d)
(¬a ∧ b ∧ c ∧ x3) ∨ (a ∧ x2 ∧ x3) ∨ (¬a ∧ b ∧ x2 ∧ x3)

= (¬a ∧ b ∧ c) ∨ (¬a ∧ b ∧ ¬c ∧ d) ∨ | x3 = (a ∧ ¬c)
(a ∧ c ∧ x3) ∨ (¬a ∧ b ∧ c ∧ x3) ∨
(a ∧ ¬c ∧ d ∧ x3) ∨ (¬a ∧ b ∧ ¬c ∧ d ∧ x3)

= (¬a ∧ b ∧ c) ∨ (¬a ∧ b ∧ ¬c ∧ d) ∨ (a ∧ c ∧ a ∧ ¬c) ∨
(¬a ∧ b ∧ c ∧ a ∧ ¬c) ∨ (a ∧ ¬c ∧ d ∧ a ∧ ¬c) ∨
(¬a ∧ b ∧ ¬c ∧ d ∧ a ∧ ¬c)

= (a ∧ ¬c ∧ d) ∨ (¬a ∧ b ∧ c) ∨ (¬a ∧ b ∧ ¬c ∧ d)
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A.4. Example 2 for Theorem 4

Maximization principle: maximize conflicts for most frequent variables first.

(a ∨ b) ∧ (c ∨ d) ∧ (¬a ∨ ¬c) | p ∨ q = (p ∨ (¬p ∧ q))
= ((a ∧ ¬b) ∨ b) ∧ ((c ∧ ¬d) ∨ d) ∧ ((¬a ∧ c) ∨ ¬c) | x1 := (a ∧ ¬b),

| x2 := (c ∧ ¬d),
| x3 := (¬a ∧ c)

= (x1 ∨ b) ∧ (x2 ∨ d) ∧ (x3 ∨ ¬c)
= ((x1 ∧ (x2 ∨ d)) ∨ (b ∧ (x2 ∨ d))) ∧ (x3 ∨ ¬c)
= ((x1 ∧ x2) ∨ (x1 ∧ d) ∨ (b ∧ x2) ∨ (b ∧ d)) ∧ (x3 ∨ ¬c)
= (x1 ∧ x2 ∧ (x3 ∨ ¬c)) ∨ (x1 ∧ d ∧ (x3 ∨ ¬c)) ∨

(b ∧ x2 ∧ (x3 ∨ ¬c)) ∨ (b ∧ d ∧ (x3 ∨ ¬c))
= (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ ¬c) ∨ (x1 ∧ d ∧ x3) ∨ | x1 = (a ∧ ¬b)

(x1 ∧ d ∧ ¬c) ∨ (b ∧ x2 ∧ x3) ∨ (b ∧ x2 ∧ ¬c) ∨
(b ∧ d ∧ x3) ∨ (b ∧ d ∧ ¬c)

= (a ∧ ¬b ∧ x2 ∧ x3) ∨ (a ∧ ¬b ∧ x2 ∧ ¬c) ∨ | x2 = (c ∧ ¬d)
(a ∧ ¬b ∧ d ∧ x3) ∨ (a ∧ ¬b ∧ d ∧ ¬c) ∨
(b ∧ x2 ∧ x3) ∨ (b ∧ x2 ∧ ¬c) ∨
(b ∧ d ∧ x3) ∨ (b ∧ d ∧ ¬c)

= (a ∧ ¬b ∧ c ∧ ¬d ∧ x3) ∨ (a ∧ ¬b ∧ c ∧ ¬d ∧ ¬c) ∨ | p ∧ ¬p = F
(a ∧ ¬b ∧ d ∧ x3) ∨ (a ∧ ¬b ∧ d ∧ ¬c) ∨
(b ∧ c ∧ ¬d ∧ x3) ∨ (b ∧ c ∧ ¬d ∧ ¬c) ∨
(b ∧ d ∧ x3) ∨ (b ∧ d ∧ ¬c)

= (a ∧ ¬b ∧ c ∧ ¬d ∧ x3) ∨ (a ∧ ¬b ∧ d ∧ x3) ∨ | x3 = (¬a ∧ c)
(a ∧ ¬b ∧ d ∧ ¬c) ∨ (b ∧ c ∧ ¬d ∧ x3) ∨
(b ∧ d ∧ x3) ∨ (b ∧ d ∧ ¬c)

= (a ∧ ¬b ∧ c ∧ ¬d ∧ ¬a ∧ c) ∨ (a ∧ ¬b ∧ d ∧ ¬a ∧ c) ∨ | p ∧ p = p,
(a ∧ ¬b ∧ d ∧ ¬c) ∨ (b ∧ c ∧ ¬d ∧ ¬a ∧ c) ∨ | p ∧ ¬p = F
(b ∧ d ∧ ¬a ∧ c) ∨ (b ∧ d ∧ ¬c)

= (a ∧ ¬b ∧ ¬c ∧ d) ∨ (¬a ∧ b ∧ c ∧ d) ∨
(¬a ∧ b ∧ c ∧ ¬d) ∨ (b ∧ ¬c ∧ d)
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A.5. Summary for Verification of Examples

BCF from example 1:
(a ∧ ¬c ∧ d) ∨ (¬a ∧ b ∧ c) ∨ (¬a ∧ b ∧ d) ∨ (b ∧ ¬c ∧ d)

DNF from example 1 for theorem 4:
(a ∧ ¬c ∧ d) ∨ (¬a ∧ b ∧ c) ∨ (¬a ∧ b ∧ ¬c ∧ d)

DNF from example 2 for theorem 4:
(a ∧ ¬b ∧ ¬c ∧ d) ∨ (¬a ∧ b ∧ c ∧ d) ∨ (¬a ∧ b ∧ c ∧ ¬d) ∨ (b ∧ ¬c ∧ d)

Solutions for Examples:

( a ∧ b ∧ ¬c ∧ d) ∨
( a ∧ ¬b ∧ ¬c ∧ d) ∨
(¬a ∧ b ∧ c ∧ d) ∨
(¬a ∧ b ∧ c ∧ ¬d) ∨
(¬a ∧ b ∧ ¬c ∧ d)

Appendix B. Detailed Summary of Experiments

Experiments with 100 randomly generated 3-CNF formulas (genAlea, 2004) with 40
variables and 171 clauses[ws-exp] were conducted and all problems except one were
solved trivially in polynomial time with a PDE based algorithm alone.

The original encoding is denoted as “CNF”. The problem was further re-encoded
as selection problem in direct encoding without conflict maximization, denoted as
“Direct enc.”.

Two versions of conflict maximization were produced. The first, “Cfl max.”, was
re-encoded with direct encoding and without redundancy removal. The second,
“Cfl red.”, was re-encoded with direct encoding after redundancy removal.

The common parameters for all solvers are the number of variables and clauses of
each experiment.

19



Generalization of CNF

The number of variables is necessarily constant for “CNF” (40), “Direct enc.” (513),
and “Cfl max.” (513). Since redundancy removal produces varying results, the num-
ber of variables necessarily varies for “Cfl red.” (avg. 86).

The number of clauses is constant for CNF (171). The number of clauses for the
versions in direct encoding depends on the number of conflicting literals between
clauses. Therefore it is necessarily higher than for CNF. The average number of
clauses for “Cfl max.” is 97905, for “Cfl red.” 2934, and for “Direct enc.” 2309.
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The raw number of decisions is used as a measure how hard the problem appears to
a CDCL SAT-solver (lingeling).

CNF Direct enc. Cfl max. Cfl red.
Var Cls Dec/a Var Cls/a Dec/a Var Cls/a Dec/a Var/a Cls/a Dec/a

40 171 30 513 2309 236 513 97905 2 86 2934 2

Solver lingeling, Var = variables, Cls = clauses, Dec = Decisions, /a = average

Leaving out “Direct enc.” provides a more detailed view of the CNF and conflict
maximization decisions.
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For the lookahead solver march rw, the LookAheadCount is used as measure for the
problem hardness.

CNF Direct enc. Cfl max. Cfl red.
Var Cls LA/a Var Cls/a LA/a Var Cls/a LA/a Var/a Cls/a LA/a

40 171 122 513 2309 10720 513 97905 365 86 2934 220

Solver march rw, Var = variables, Cls = clauses, LA = LookAheadCount, /a = average

More detailed view without “Direct enc.”:
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