
Reflections Vol. 1 (2013) 1–100

2-SAT Algorithm For Complete Set of Solutions

Wolfgang Scherer Wolfgang.Scherer@gmx.de

Abstract

The satoku matrix is constructed based on an inverted adjacency matrix as a
data structure representing all possible solutions to a boolean satisfiability problem
(k-SAT) as partial assignments with space requirements of O((m · k)2).

A computational algorithm (requirements update algorithm) is presented, which
propagates the known consequences of conflicts throughout the satoku matrix in
polynomial time.

It is shown that satisfiability of 2-SAT problems is determined after the first run
of the requirements update algorithm.

A method is presented to generate a set of reliable assignments from the satoku
matrix, which represent all solutions to the underlying 2-SAT problem.

The set of reliable assignments can be made unique by adding a conflict bias to the
original CNF problem.

Keywords: boolean satisfiability, 2-SAT, SAT-solver, selection problem, satoku

Contents

1 Preface 3

2 SAT Problems 4

3 Independent Set Problem and Adjacency Matrix 4

4 Satoku Matrix 5

5 Adjacency Matrix Properties 8

6 Classification of Boolean Values 9

7 Requirements Update Algorithm 9

©2013 Wolfgang Scherer.

2-SAT Algorithm For Complete Set of Solutions

7.1 Selection Logic . 10

7.2 Mirror Property . 10

7.3 Unselectable Rows, Unsatisfiability 10

7.4 Soft/Hard Property, Superset Rows 11

7.5 Serialized Requirement Update Algorithm 11

7.5.1 Global Status . 12

7.5.2 Get Selection Request . 13

7.5.3 One Counts . 13

7.5.4 Row Update Request . 13

7.5.5 Superset Update Request . 14

7.5.6 Kill Row . 14

7.5.7 Zero Change . 15

7.5.8 Update Row . 16

7.5.9 Update Zeroes . 18

7.5.10 Update Superset Rows . 18

7.5.11 Update Supersets . 18

7.5.12 Update Rows . 19

7.6 Worst Case Running Time . 19

8 Conflicts 19

9 Solutions 20

Appendix A. Clause Vectors 21

Appendix B. Rationale 21

B.1. Allow Negated and Unnegated Variables in the Same Clause 21

B.2. CNF vs. ConDNF, Conflict Bias . 24

B.2.1. Conflict Bias Basics . 26

B.2.2. Conflict Bias Variations . 28

Appendix C. Satoku Matrix Details 30

2

Satoku Matrix

1. Preface

The description of the satoku matrix presents a peculiar satisfiability problem in itself.
While trying to satisfy the expectation of established mathematical conventions, I
found it quite hard to choose appropriate terms without being misleading.

On one hand it is necessary to use established terms to facilitate categorization, on the
other hand it is obviously necessary to emphasize the differences to avoid inapplicable
expectations from established preconceptions.

Although there is nothing revolutionary new in this algorithm, the deviation from
convential interpretation of logic and its consequences leads to some interesting in-
sights, but on the other hand it requires that the meaning of mathematically not
necessary must be properly distinguished from the meaning of irrelevant. In my own
experience I also found it to be important to avoid the fallacy, that since something
is true, it should follow that it is relevant.

Therefore, some concepts of the algorithm are mentioned explicitely with a short ra-
tionale, to give a hint regarding the difference in perspective from established notions.

The algorithm removes special meaning from literals in clauses by abstracting them
to generic vertices of a graph1.. Besides the necessary structural constraints of con-
flicting literals as edges, the algorithm also preserves the structural constraints
of clauses. The resulting class of propositional selection problems P has a
narrower definition than the class of general selection problems S:

∀f : f ∈ P → f ∈ S,
6 ∀g : g ∈ S → g ∈ P.

Note, that this does not mean, that some selection problems cannot be solved by
mapping them to a satisfiability problem. It only means, that the graph of a general
selection problem and the corresponding graph of a propositional selection problem
are not necessarily isomorphic.

The algorithm further widens the narrow definition of problems in conjunctive normal
form CNF to a more general conjunction of clauses in disjunctive normal
form DNF, e.g.:

(p ∨ q) ∧
(r ∨ s)
⇔
((p ∧ T) ∨ (q ∧ T)) ∧
((r ∧ T) ∨ (s ∧ T)),

1. This often raises expectations of a graph algorithm. However, the graph representation of a
selection problem is just the correct mapping for propositional selection problems. Only the
scope of general graph theory is too wide to adequately handle selection problems represented
by propositional formulas. The loss of information by ignoring (unnecessary, but not irrelevant)
clauses makes propositional selection problems unnecessarily complex.

3

2-SAT Algorithm For Complete Set of Solutions

which allows to explore the usefulness of simple conflict maximization based on the
logical equivalence of:

(p ∨ q ∨ r) = ((p) ∨ (¬p ∧ q) ∨ (¬p ∧ ¬q ∧ r)) .

See appendix B.2 for further details.

The requirement, that a variable and its negation must not appear in the same clause
(redundancy removal) is dropped in favor of the convenient possibility to represent
a variable p as a clause:

p 7→ (p ∨ ¬p).

See appendix B.1 for further details.

The term conflict is used in its general sense as a conflict between literals or partial
assignments. There is no relation to the term conflict of conflict driven clause
learning CDCL.

2. SAT Problems

In this article a general SAT problem P is a conjunction of one or more disjunctive
clauses Ci, i = (0, 1, . . . , |P | − 1), consisting of one or more conjunctions Aij , j =
(0, 1, . . . , |Ci| − 1) of one or more literals lf , f = (0, 1, . . . , |Aij | − 1):

P =

|P |−1∧
i=0

Ci, Ci =

|Ci|−1∨
j=0

Aij , Aij =

|Aij
|−1∧

f=0

lf

A k-SAT problem consists entirely of clauses with the same size k = |Ci|, where
k = (1, 2, 3, . . .):

P =

|P |−1∧
i=0

k−1∨
j=0

|Aij
|−1∧

f=0

lf

3. Independent Set Problem and Adjacency Matrix

As shown in David M. Mount, CMSC 451 Lecture Notes, Fall 2012, pp. 92, a 3-SAT
problem can be mapped to an independent set problem in polynomial time.

The mapping to an independent set problem ensures, that only one literal can be
selected from each clause.

Independent set problems can further be mapped to an adjacency matrix, which can
be inverted directly during mapping by exchanging 0 and 1.

4

http://www.cs.umd.edu/class/fall2012/cmsc451/Lects/cmsc451-lects.pdf
http://en.wikipedia.org/wiki/Adjacency_matrix

Satoku Matrix

4. Satoku Matrix

The inverted adjacency matrix of the independent set graph ignores the clause re-
strictions, which were explicitly introduced during the mapping (and are therefore
implicit in the final inverted adjacency matrix). However, the information is readily
available during mapping and allows to subdivide the matrix into regions, which show
the relation of the matrix to the mapped clauses.

This augmented inverted adjacency matrix is called satoku matrix (SM) to clearly
indicate, that the algorithm is not necessarily related to graph theory and the inde-
pendent set problem. The basic transformations of the satoku matrix preserve the
properties of the initial matrix, therefore the results of transformations are consistent
with graph theory. However, the consequences are outside the scope of this discussion.

Note: The satoku matrix was originally designed as optimal data structure to capture
all information provided by a propositional problem in CNF for properly representing
partial assignments for all possible solutions. The fact that it can also be interpreted
as inverted adjacency matrix was detected much later and just proves that the map-
ping is correct. Using the correctness of the mapping to an inverted adjacency matrix
as starting point just spares the reader the 100 odd pages of an inductive correctness
proof based on full truth tables and the mutual exclusion relation. It also saves the
author the need to find anybody to read said proof. But it requires to emphasize that
the correlation to graph theory is a mere coincidence (although it could have been
expected).

The properties of a SM are shown by mapping the following SAT-Problem (see ap-
pendix C for detailed construction):

(¬a ∨ ¬b ∨ c) ∧
(¬a ∨ b ∨ ¬c) ∧
(¬a ∨ b ∨ c) ∧
(a ∨ ¬b ∨ ¬c) ∧
(a ∨ ¬b ∨ c) ∧
(a ∨ b ∨ ¬c) ∧
(a ∨ b ∨ c) ∧
(a ∨ ¬a) ∧
(b ∨ ¬b) ∧
(c ∨ ¬c)

5

2-SAT Algorithm For Complete Set of Solutions

The full satoku matrix for this problem looks like this:

P −−− −−− −−− −−− −−− −−− −−− −− −− −−

s00 1 ◦ ◦ −−− −−− 0−− 0−− 0−− 0−− 0 1 −− −− ¬a ∨
s01 ◦ 1 ◦ −0− −0− −−− −−− −0− −0− −− 0 1 −− ¬b ∨
s02 ◦ ◦ 1 −−0 −−− −−0 −−− −−0 −−− −− −− 1 0 c

s10 −−− 1 ◦ ◦ −−− 0−− 0−− 0−− 0−− 0 1 −− −− ¬a ∨
s11 −0− ◦ 1 ◦ −−− −0− −0− −−− −−− −− 1 0 −− b ∨
s12 −−0 ◦ ◦ 1 −−0 −−− −−0 −−− −−0 −− −− 0 1 ¬c
s20 −−− −−− 1 ◦ ◦ 0−− 0−− 0−− 0−− 0 1 −− −− ¬a ∨
s21 −0− −−− ◦ 1 ◦ −0− −0− −−− −−− −− 1 0 −− b ∨
s22 −−− −−0 ◦ ◦ 1 −−0 −−− −−0 −−− −− −− 1 0 c

s30 0−− 0−− 0−− 1 ◦ ◦ −−− −−− −−− 1 0 −− −− a ∨
s31 −−− −0− −0− ◦ 1 ◦ −−− −0− −0− −− 0 1 −− ¬b ∨
s32 −−0 −−− −−0 ◦ ◦ 1 −−0 −−− −−0 −− −− 0 1 ¬c
s40 0−− 0−− 0−− −−− 1 ◦ ◦ −−− −−− 1 0 −− −− a ∨
s41 −−− −0− −0− −−− ◦ 1 ◦ −0− −0− −− 0 1 −− ¬b ∨
s42 −−− −−0 −−− −−0 ◦ ◦ 1 −−0 −−− −− −− 1 0 c

s50 0−− 0−− 0−− −−− −−− 1 ◦ ◦ −−− 1 0 −− −− a ∨
s51 −0− −−− −−− −0− −0− ◦ 1 ◦ −−− −− 1 0 −− b ∨
s52 −−0 −−− −−0 −−− −−0 ◦ ◦ 1 −−0 −− −− 0 1 ¬c
s60 0−− 0−− 0−− −−− −−− −−− 1 ◦ ◦ 1 0 −− −− a ∨
s61 −0− −−− −−− −0− −0− −−− ◦ 1 ◦ −− 1 0 −− b ∨
s62 −−− −−0 −−− −−0 −−− −−0 ◦ ◦ 1 −− −− 1 0 c

s70 0−− 0−− 0−− −−− −−− −−− −−− 1 ◦ −− −− a
s71 −−− −−− −−− 0−− 0−− 0−− 0−− ◦ 1 −− −− ¬a
s80 −0− −−− −−− −0− −0− −−− −−− −− 1 ◦ −− b
s81 −−− −0− −0− −−− −−− −0− −0− −− ◦ 1 −− ¬b
s90 −−− −−0 −−− −−0 −−− −−0 −−− −− −− 1 ◦ c
s91 −−0 −−− −−0 −−− −−0 −−− −−0 −− −− ◦ 1 ¬c

.

The components of a satoku matrix are defined as follows:

• A selection row is an entire satoku matrix row, which represents a selection
from a clause of the mapped SAT problem including the dependencies on all
other selections.

The selection row indexing sij refers to conjunction j from clause i of the mapped
SAT problem.

6

Satoku Matrix

Selection row s00 of the example SM:

s00 1 ◦ ◦ −−− −−− 0−− 0−− 0−− 0−− 0 1 −− −−

• satoku matrix subdivisions limited by horizontal lines represent clause sub-
matrices Si, containing one or more selection rows sij .

Clause sub-matrices are further divided by vertical lines into clause conflict
sub-matrices Si,f , where f has the same range of values as i.

A clause conflict sub-matrix Si,f represents the dependencies between all selec-
tions from two SAT problem clauses Si and Sf .

The special clause conflict sub-matrix Si,i is called clause identity sub-matrix.

Clause sub-matrix S0 of the example SM:

s00 1 ◦ ◦ −−− −−− 0−− 0−− 0−− 0−− 0 1 −− −−
s01 ◦ 1 ◦ −0− −0− −−− −−− −0− −0− −− 0 1 −−
s02 ◦ ◦ 1 −−0 −−− −−0 −−− −−0 −−− −− −− 1 0

Clause conflict sub-matrix S0,3 of the example SM highlighted in green:

s00 1 ◦ ◦ −−− −−− 0 ---- 0−− 0−− 0−− 0 1 −− −−
s01 ◦ 1 ◦ −0− −0− ------ −−− −0− −0− −− 0 1 −−
s02 ◦ ◦ 1 −−0 −−− ---- 0 −−− −−0 −−− −− −− 1 0

Clause identity sub-matrix S0,0 of the example SM highlighted in green:

s00 1◦◦ −−− −−− 0−− 0−− 0−− 0−− 0 1 −− −−
s01 ◦1◦ −0− −0− −−− −−− −0− −0− −− 0 1 −−
s02 ◦◦1 −−0 −−− −−0 −−− −−0 −−− −− −− 1 0

• A clause segment csij ,f denotes the intersection of selection row sij and clause
conflict sub-matrix Si,f .

Clause segment cs01,2 of the example SM highlighted in green:

s01 ◦ 1 ◦ −0− -- 0 -- −−− −−− −0− −0− −− 0 1 −−

7

2-SAT Algorithm For Complete Set of Solutions

• A dash (-) is merely a substitution for the boolean value 1, if there is more than
one matrix cell containing the value 1 present in a clause segment of a selection
row. It designates a possible selection of the corresponding selection row.

• The row labeled P is not part of the matrix, it shows the status of globally
possible (- or +), required (1) and impossible (0) selections.

• The double lines are just visual aids to separate semantically different groups
(e.g., core problem clauses and variables). They have the same meaning as a
single line.

• The right margin is used for comments which can be completely ignored.

5. Adjacency Matrix Properties

Given a set of clauses C and a set of variables V mapped to a set W of 2-literal
clauses wj = (vj ∨ ¬vj), vj ∈ V, j = (0, 1, . . . , |V | − 1), the row count L is:

L =
m−1∑
i=0

|ci|+
n−1∑
j=0

|wj|

m = |C|, c ∈ C, n = |W |, w ∈ W

A matrix cell refers to the value in the matrix at a specific position. For the adjacency
matrix cell properties in this section, the standard index scheme for row t and column
u is used: t, u = (0, 1, . . . , L − 1). Rows are denoted by rt, matrix cells are denoted
by ct,u.

Each matrix row consists of L matrix cells. The SM consists of L selection rows.

Therefore the space requirements of the mapping algorithm are O(L2).

• An inverted adjacency matrix is necessarily symmetrical (mirrored at the ma-
trix diagonal). This property follows from mapping an undirected graph to an
inverted adjacency matrix. This property also holds for the satoku matrix.

• The row and column indexes of a matrix cell are equivalent to the row indexes
of the related rows. E.g., cell c3,5 refers to row r3 and row r5.

• If the value of the matrix cell ct,u is zero (0), it is said that the selection of row
rt depends on (conflicts with) the selection of row ru, or that selection of row
rt makes selection of row ru impossible.

Due to symmetry, it can also be said, that selection of row ru depends on
(conflicts with) the selection of row rt.

8

Satoku Matrix

• If the value of the matrix cell ct,u is one (1), it is said that the selection of row
rt is independent from the selection of row ru. In the context of row rt, the
selection of row ru is possible.

Due to symmetry, it can also be said, that the selection of row ru is independent
from the selection of row rt.

6. Classification of Boolean Values

In the context of selection rows, a matrix cell is denoted as cij ,fg , corresponding to
selection rows sij and sfg .

The boolean value 0 in a matrix cell cij ,fg signifies that selection sfg is impossible in
the context of selection row sij .

The boolean value instances of 1 in the SM are classified based on the number of
occurrences in a clause segment of a selection row.

• If a clause segment in a selection row contains more than one matrix cell with
the boolean value 1, the values are replaced by a dash (-) for display and called
soft one. Note that the truth value of a soft one is still T, the substitution is
merely ornamental.

• If a clause segment csij ,f in a selection row sij contains exactly one matrix cell
cij ,fg with the boolean value 1, the value is unchanged and called a hard one.
The corresponding selection row sfg becomes a required (or necessary) selection
for selection row sij .

Example of unclassified selection row s00 :

s00 1 0 0 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1

transformed to classified selection row s00 :

s00 1 ◦ ◦ −−− −−− 0−− 0−− 0−− 0−− 0 1 −− −−

7. Requirements Update Algorithm

Following the consequences of potential selections can be interpreted as simple conflict
propagation. However, a more flexible interpretation is that of incrementally refining
partial assignments, effectively resulting in a partial distributive expansion of the
problem clauses.

9

http://sw-amt.ws/satoku/doc/doc-partial-distributive-expansion/README.html

2-SAT Algorithm For Complete Set of Solutions

The satoku matrix is used as a dynamic data structure. It is therefore necessary
to define the operations in a manner as to preserve the properties of an inverted
adjacency matrix.

In order to facilitate detection of soft one → hard one transitions, a soft one is
represented by the value 2.

Assignment of a value z to a variable x is denoted as x← z.

7.1 Selection Logic

The logic of selections involves the truth values T, F and the logical functions AND
and (implicitely) single selection (X1).

Table 1 shows how matrix cell values map to truth values.

Matrix Cell Value Truth Value

0 F

1 T

2 T

Table 1. Mapping of Matrix Cell Values to Truth Values

The hard/soft property for truth value T is determined contextually and has different
semantics in regard to the required updates and the relationship between selection
rows. However, for the purpose of logical operations both hard ones and soft ones
represent the truth value T.

7.2 Mirror Property

Each matrix cell ct,u has a mirror cell cu,t, which must be kept synchronized. Cells on
the matrix diagonal are their own mirror, which makes synchronization trivial since
they are obviously always synchronized to themselves.

RT: O(1)

7.3 Unselectable Rows, Unsatisfiability

• If it so happens, that any clause segment csij ,f of a selection row sij is filled
entirely with zeroes, sij can no longer be selected at all, i.e., it becomes unse-
lectable. Therefore the entire row sij is filled with zeroes. Due to the mirror
cell requirements, column scij is also filled with zeroes. The selection of row sij
is called a contradiction.

RT: O(n)

10

Satoku Matrix

• If all selection rows sij in a clause sub-matrix Si become unselectable, the cor-
responding propositional problem is unsatisfiable.

RT: O(1)

7.4 Soft/Hard Property, Superset Rows

• If there is a selection row sij , with a hard one in cell cij ,fg , it follows, that if the
selection represented by sij is made then the selection represented by sfg must
also be made. This is necessary to preserve satisfiability.

It is said, that selection row sij requires selection row sfg (necessary selection).
Therefore, selection row sij is called a superset row of sfg .

• If it so happens, that a clause segment csij ,f of a selection row sij is filled with
zeroes except for a single soft one at cij ,fg , the soft one becomes a hard one and
the conflicts of the required selection row sfg are added to row sij .

All values in the matrix cells cij ,xy of selection row sij are replaced by the logical
AND of the value in cij ,xy and the value in cfg ,xy from selection row sfg :

sij ∧ sfg
= ∀x, y : cij ,xy ← cij ,xy ∧ cfg ,xy ,

i, f, x ∈ {0, 1, . . . , |P | − 1},
j ∈ {0, 1, . . . , |Ci| − 1},
g ∈ {0, 1, . . . , |Cf | − 1},
y ∈ {0, 1, . . . , |Cx| − 1}

This effectively adds all conflicts (zeroes) from sfg to sij .

RT: O(n)

• If new conflicts are added to a selection row (matrix cell value changes from 1
or 2 to 0), all superset rows must be updated accordingly.

7.5 Serialized Requirement Update Algorithm

To facilitate analysis of run-time behavior, a requirements update algorithm is con-
structed, which serializes the update steps.

For a k-SAT problem P with m clauses C of fixed size k, the number of selection
rows r in the satoku matrix SM is:

r = k ·m.

The number of matrix cells is r2.

11

2-SAT Algorithm For Complete Set of Solutions

7.5.1 Global Status

Clause information (index, offset, size) is stored in array clauses.

Matrix row information is stored in array rows consisting of an array of bytes (matrix
cells) for each row. A matrix cell can have the values 0, 1, 2 signifying a conflict(0), a
hard one (1) or a soft one (2).

The global SM status is tracked with flag arrays and request lists.

The array row status contains a flag for each matrix row sij . The initial value is 2
(soft one) for a posssible selection. If a selection row sij becomes unselectable, the
corresponding flag row statusij becomes 0.

The list zero updates holds the required mirror cell zero transitions. Duplicate zero
update requests are implicitely avoided in function zero change.

The array row update flags contains a flag for each matrix row. The initial value
is 0. If the requirements for the row must be updated, the flag becomes 1. The flags
are used to prevent unnecessary duplicate updates.

The list row updates holds the requirement update info for each row in the order of
detection.

The array superset update flags contains a flag for each matrix row. The initial
value is 0. If the superset requirements for a row must be updated, the flag becomes
1. The flags are used to prevent unnecessary duplicate updates.

The list superset updates holds the superset requirement update info for each row
in the order of detection.

Space requirements for the data structures are shown in table 2.

Data Structure Space

clauses[m] SPACE(m)
rows[r] SPACE(r2)
row status[r] SPACE(r)
zero updates[] (list of requests) SPACE(r2)
row update flags[r] (flags) SPACE(r)
row updates[] (list of requests) SPACE(r)
superset update flags[r] (flags) SPACE(r)
superset updates[] (list of requests) SPACE(r)

Table 2. Space Requirements for Auxiliary Data Structures

12

Satoku Matrix

7.5.2 Get Selection Request

Get the offset of a selection request. I.e., the index of a single soft one in a clause
segment csij ,f of a selection row.

return value: index of selection request or -1
function get selection request(row, f): O(k)

sel req index ← -1
size ← clauses[f].size
ci ← clauses[f].offset
for g in range(size): O(k)

if row[ci + g] > 1:
if sel req index ≥ 0:

sel req index ← -1
break

sel req index ← g
return sel req index

7.5.3 One Counts

Get hard one and soft one counts for a clause segment.

return values: soft one count, hard one count
function one counts(row, f): O(k)

soft count ← 0
hard count ← 0
size ← clauses[f].size
ci ← clauses[f].offset
for g in range(size): O(k)

value ← row[ci + g]
if value > 1:

soft count ← soft count + 1
elif value > 0:

hard count ← hard count + 1
return soft count, hard count

7.5.4 Row Update Request

A row update request is issued, when the requirements of a selection row must be
updated.

13

2-SAT Algorithm For Complete Set of Solutions

procedure row update request(i, j): O(1)
ri ← clauses[i].offset + j
if row status[ri] = 0:

return
if row update flags[ri] = 1:

return
mark row in row update flags:
row update flags[ri] ← 1

add update request to row updates

7.5.5 Superset Update Request

A superset update request is issued, when the requirements for the superset rows
of a selection row must be updated.

procedure superset update request(i, j): O(1)
ri ← clauses[i].offset + j
if row status[ri] = 0:

return
if row update flags[ri] = 1:

return
if superset update flags[ri] = 1:

return
mark row in superset update flags:
superset update flags[ri] ← 1

add superset update request to superset updates

7.5.6 Kill Row

When all matrix cells of a clause segment of a selection row become 0 (contradiction),
the row becomes unselectable and is filled with zeroes.

Since unselectable rows decrease the problem size, early detection of contradictions
is desirable.

procedure kill row(i, j): O(r)
ri ← clauses[i].offset + j
mark row as inactive:
row status[ri] ← 0

if all rows in clause are disabled: O(k)
raise UNSAT

for clause in clauses: O(m)
f ← clause.index
for g in range(clause.size): O(k)
zero change(f, g, i, j, immediate=True) O(k)

14

Satoku Matrix

7.5.7 Zero Change

Apply zero transition to a matrix cell.

row update request and superset update request are issued as appropriate.

Early contradiction detection is implemented, since it decreases problem size. How-
ever, the running time for killing a row is not included in the overall running time
estimate.

return values: killed flag, changed flag
function zero change(i, j, f, g, immediate=False): O(k)

ri ← clauses[i].offset + j
ci ← clauses[f].offset + g
killed ← False
changed ← False
if row status[ri] = 0:

return killed, changed
row ← rows[ri]
if row[ci] 6= 0:

changed ← True
row[ci] ← 0
soft count, hard count ← one counts(row, f) O(k)
killed ← (soft count + hard count) = 0
if killed:
kill row(i, j) O(r)
return killed, changed

if soft count = 1:
row update request(i, j) O(1)

else:
superset update request(i, j) O(1)

if rows[ci][ri] 6= 0:
if immediate:

return zero change(f, g, i, j) O(k)
else:

if row status[ci] 6= 0:
soft count, hard count ← one counts(rows[ci], i) O(k)
mkilled ← (soft count + hard count) = 1
if mkilled:
kill row(f, g) O(r)

else:
add zero request for mirror cell (zero updates)

return killed, changed

15

2-SAT Algorithm For Complete Set of Solutions

7.5.8 Update Row

Update required selections of a selection row.

The matrix cell values 1(hard one) and 2(soft one) are equivalent to the truth value
T. The matrix cell value 0 is equivalent to the truth value F (see table 1).

If a clause segment csij ,f of a selection row sij (row) contains a single truth value T

in matrix cell sij ,fg , the corresponding selection row sfg (rq row) is required. In the
context of this algorithm, the required selection must be updated, if the single truth
value is a soft one (2).

Table 3 shows how the matrix cell values of the required selection row sfg (rq row)
are incorporated into the selection row sij (row). ci denotes the matrix cell index.

row[ci] rq row[ci] row[ci]’

row[ci] ≤ rq row[ci] row[ci]
2 1 1

1, 2 0 zero change(i, j, . . .)

Table 3. Logical AND of selection rows

The result is equivalent to a logical AND of selection rows sij , sfg :

s′ij = sij ∧ sfg .

Note, that a selection row with a contradiction is not considered changed, since there
can no longer be any superset rows after the row and column are filled with zeroes.

16

Satoku Matrix

return value: row changed
function update row(i, j): O(r3)

row changed ← False
ri ← clauses[i].offset + j
if row status[ri] = 0:
row update flags[ri] ← 0
return row changed

if row update flags[ri] = 0:
return row changed

row ← rows[ri]
row size ← len(row)
updated ← True
while updated: O(m2 · r)

updated ← False
for clause in clauses: O(m)

f ← clause.index
if f = i:

// skip identity clause segment
continue

g ← get selection request(row, f) O(k)
if g ≥ 0:

rq row ← rows[clause.offset + g]
for ci in range(row size): O(r)

if rq row[ci] < row[ci]:
if rq row[ci] = 0:

rq f = row clause map[ci]
rq g = row literal map[ci]
killed, changed = zero change(i, j, rq f, rq g) O(k)
if killed:

row changed = False
row update flags[ri] ← 0
return row changed

row changed ← row changed ∨ changed
updated ← True

else:
// this will change the soft one
// for row[ci] to a hard one
row[ci] ← rq row[ci]

row update flags[ri] ← 0
return row changed

17

2-SAT Algorithm For Complete Set of Solutions

7.5.9 Update Zeroes

Handle pending zero changes.

The absolute maximum of pending zero changes is r2

2
. A pending zero change can-

not trigger another zero change. It can, however, trigger a row update request,
superset update request or kill row.

procedure update zeroes() O(r2)
if len(zero updates) = 0:

return
zuc ← zero updates

zero updates ← []

for zu in zuc: O(r2)
zero change(zu.i, zu.j, zu.f, zu.g) O(k)

7.5.10 Update Superset Rows

Change hard one to soft one in superset rows and issue update requests.

procedure update superset rows(i, j): O(r)
ci ← clauses[i].offset + j
if row status[ci] = 0:
superset update flags[ci] ← 0
return

if superset update flags[ci] = 0:
return

for ri, row in enumerate(rows): O(r)
if ri = ci:

continue
if row[ci] = 1:

row[ci] ← 2
f, g ← clause map[ri]
row update request(f, g)

superset update flags[ci] ← 0

7.5.11 Update Supersets

Handle pending superset row update requests.

procedure update supersets() O(r2)
suc ← superset updates

superset updates ← []

for req in suc: O(r2)
update superset rows(req.i, req.j) O(r)

18

Satoku Matrix

7.5.12 Update Rows

Propagate conflicts throughout the SM.

procedure update rows() O(r5)
update zeroes() O(r2)
while row updates: O(r5)

ruc ← row updates

row updates ← []

for req in ruc: O(r4)
row changed ← update row(req.i, req.j) O(r3)
if row changed:
superset update request(req.i, req.j)

update zeroes() O(r2)
update supersets() O(r2)

7.6 Worst Case Running Time

The functions zero change and kill row form a recursive loop. The maximum
recursion depth is r, when all selection rows are killed. The worst case running time
is therefore O(r2).

The running time estimates given for the row update procedures are just theoretical
upper bounds to show that the algorithm runs in polynomial time. The actual worst
case for the reference implementation occurs, when a 2-SAT problem in SNF notation
is mapped and all clauses become identical.

Measurements with the reference implementation show an overall run time behavior
of O(r2). I.e., the requirements update algorithm is actually linear over the satoku
matrix.

The reason is that when all clauses become identical, only the k rows of the first
clause actually update with at most m− 1 other rows each, k · (m− 1). All rows in
other clauses only update once with one of the rows from the first clause, k · (m− 1),
giving a total of k · (m− 1) + k · (m− 1) = 2 · k · (m− 1) updates. See Row Updates
for a step-by-step example.

There is also plenty of room to optimize the requirements update algorithm by using
the same row data for identical rows (rows that require each other).

8. Conflicts

See Indirect Conflicts for a discussion of conflicts.

todo

19

http://sw-amt.ws/satoku/doc/doc-update-row/README.html
http://www.sw-amt.ws/satoku/doc/doc-indirect-conflict/README.html

2-SAT Algorithm For Complete Set of Solutions

9. Solutions

See 2-SAT Solutions for distributive expansion and the set of minimal solutions for a
boolean problem. It also describes alternative methods of retrieving a set of (partial)
solutions.

todo

20

http://sw-amt.ws/satoku/doc/doc-2-sat-solutions/README.html

Satoku Matrix

Appendix A. Clause Vectors

Clause vectors are rows of a clause variable matrix. Handbook of Satisfiability Chat-
per 11.

Appendix B. Rationale

This section describes some of the design choices more detailed.

B.1. Allow Negated and Unnegated Variables in the Same Clause

Redundancies appear in many shapes and sizes. The requirement of removing the
most trivial ones accomplishes nothing. The simple problem:

(p ∨ q) ∧ (¬p ∨ ¬q)

is reduced in the satoku matrix to an equivalence of all clauses:

P −− −− −− −−

s00 1 ◦ 0 1 1 0 0 1 p ∨
s01 ◦ 1 1 0 0 1 1 0 q

s10 0 1 1 ◦ 0 1 1 0 ¬p ∨
s11 1 0 ◦ 1 1 0 0 1 ¬q

s20 1 0 0 1 1 ◦ 0 1 p
s21 0 1 1 0 ◦ 1 1 0 ¬p
s30 0 1 1 0 0 1 1 ◦ q
s31 1 0 0 1 1 0 ◦ 1 ¬q

.

After removing the redundancies, the satoku matrix presents as:

P −−

s00 1 ◦ p
s01 ◦ 1 ¬p

,

which shows, that the original problem was just an elaborate way of specifying (p∨¬p):

(p ≡ ¬q) ∧ (¬p ≡ q)
⇒ (p ∨ q) ∧ (¬p ∨ ¬q) ≡ (p ∨ ¬p) ∧ (¬p ∨ p)
⇒ (p ∨ ¬p)

.

21

2-SAT Algorithm For Complete Set of Solutions

This technique could be used to replace all variable clauses (p ∨ ¬p) with 2 clauses
(p ∨ q) ∧ (¬p ∨ ¬q), where q is a new variable, that does not appear otherwise in the
formula.

While this would then satisfy the formal requirements for a CNF formula, it does
seem a bit silly. Expanding the 2-literal clauses further to 3-literal clauses would
make the Kafkaesque bureaucracy perfect:

(p ∨ q ∨ ¬r) ∧
(p ∨ q ∨ r) ∧
(¬p ∨ ¬q ∨ ¬s) ∧
(¬p ∨ ¬q ∨ s)

Mapped to a plain satoku matrix, the monstrosity appears as a real problem:

P −−− −−− −−− −−− −− −− −− −−

s00 1 ◦ ◦ −−− 0−− 0−− 1 0 −− −− −−
s01 ◦ 1 ◦ −−− −0− −0− −− 1 0 −− −−
s02 ◦ ◦ 1 −−0 −−− −−− −− −− 0 1 −−
s10 −−− 1 ◦ ◦ 0−− 0−− 1 0 −− −− −−
s11 −−− ◦ 1 ◦ −0− −0− −− 1 0 −− −−
s12 −−0 ◦ ◦ 1 −−− −−− −− −− 1 0 −−
s20 0−− 0−− 1 ◦ ◦ −−− 0 1 −− −− −−
s21 −0− −0− ◦ 1 ◦ −−− −− 0 1 −− −−
s22 −−− −−− ◦ ◦ 1 −−0 −− −− −− 0 1

s30 0−− 0−− −−− 1 ◦ ◦ 0 1 −− −− −−
s31 −0− −0− −−− ◦ 1 ◦ −− 0 1 −− −−
s32 −−− −−− −−0 ◦ ◦ 1 −− −− −− 1 0

s40 −−− −−− 0−− 0−− 1 ◦ −− −− −− p
s41 0−− 0−− −−− −−− ◦ 1 −− −− −− ¬p
s50 −−− −−− −0− −0− −− 1 ◦ −− −− q
s51 −0− −0− −−− −−− −− ◦ 1 −− −− ¬q
s60 −−0 −−− −−− −−− −− −− 1 ◦ −− r
s61 −−− −−0 −−− −−− −− −− ◦ 1 −− ¬r
s70 −−− −−− −−0 −−− −− −− −− 1 ◦ s
s71 −−− −−− −−− −−0 −− −− −− ◦ 1 ¬s

,

22

Satoku Matrix

Mapped to a satoku matrix with conflict bias:

P −−0 −−0 −−0 −−0 −− −− −− −−

s00 1 ◦ ◦ 1 0 0 0 1 0 0 1 0 1 0 0 1 −− −−
s01 ◦ 1 ◦ 0 1 0 1 0 0 1 0 0 0 1 1 0 −− −−
s02 ◦ ◦ ◦ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

s10 1 0 0 1 ◦ ◦ 0 1 0 0 1 0 1 0 0 1 −− −−
s11 0 1 0 ◦ 1 ◦ 1 0 0 1 0 0 0 1 1 0 −− −−
s12 0 0 0 ◦ ◦ ◦ 0 0 0 0 0 0 0 0 0 0 0 0 0 0

s20 0 1 0 0 1 0 1 ◦ ◦ 1 0 0 0 1 1 0 −− −−
s21 1 0 0 1 0 0 ◦ 1 ◦ 0 1 0 1 0 0 1 −− −−
s22 0 0 0 0 0 0 ◦ ◦ ◦ 0 0 0 0 0 0 0 0 0 0 0

s30 0 1 0 0 1 0 1 0 0 1 ◦ ◦ 0 1 1 0 −− −−
s31 1 0 0 1 0 0 0 1 0 ◦ 1 ◦ 1 0 0 1 −− −−
s32 0 0 0 0 0 0 0 0 0 ◦ ◦ ◦ 0 0 0 0 0 0 0 0

s40 1 0 0 1 0 0 0 1 0 0 1 0 1 ◦ 0 1 −− −− p
s41 0 1 0 0 1 0 1 0 0 1 0 0 ◦ 1 1 0 −− −− ¬p
s50 0 1 0 0 1 0 1 0 0 1 0 0 0 1 1 ◦ −− −− q
s51 1 0 0 1 0 0 0 1 0 0 1 0 1 0 ◦ 1 −− −− ¬q
s60 −−0 −−0 −−0 −−0 −− −− 1 ◦ −− r
s61 −−0 −−0 −−0 −−0 −− −− ◦ 1 −− ¬r
s70 −−0 −−0 −−0 −−0 −− −− −− 1 ◦ s
s71 −−0 −−0 −−0 −−0 −− −− −− ◦ 1 ¬s

,

the problem goes away, but 2 of the 3 additional variables remain as artifacts, which
introduces even more tautologies than originally planned:

P −− −− −−

s00 1 ◦ −− −− p
s01 ◦ 1 −− −− ¬p
s10 −− 1 ◦ −− r
s11 −− ◦ 1 −− ¬r
s20 −− −− 1 ◦ s
s21 −− −− ◦ 1 ¬s

.

Note, that MiniSat v1.14 actually makes 4 decisions for this problem, MiniSat v2.2.0
reports 1 decision and lingeling ats 57807c8f410a9e676816984a0ad0c410e485bcae re-
ports no decisions.

23

2-SAT Algorithm For Complete Set of Solutions

B.2. CNF vs. ConDNF, Conflict Bias

Given the propositional formulas:

A = ¬p ∧ q,
B = ¬p ∧ ¬q ∧ r,
C = p ∨ A ∨B,
D = p ∨ q ∨ r,

a fully expanded truth table shows, that the propositional formulas C and D are
logically equivalent:

p q r ¬p ¬q ¬r A B C D
0 0 0 1 1 1 0 0 0 0
0 0 1 1 1 0 0 1 1 1
0 1 0 1 0 1 1 0 1 1
0 1 1 1 0 0 1 0 1 1
1 0 0 0 1 1 0 0 1 1
1 0 1 0 1 0 0 0 1 1
1 1 0 0 0 1 0 0 1 1
1 1 1 0 0 0 0 0 1 1

Therefore, the following equivalence holds:

(p ∨ q ∨ r)
≡ (p ∨ (¬p ∧ q) ∨ (¬p ∧ ¬q ∧ r))

Propositional formulas C and D are said to be logically equivalent.

Two clauses c0, c1 containing only literals, are said to be structurally equivalent c0
s
= c1,

if both contain the same set of literals.

Two propositional formulas P0, P1 are said to be structurally equivalent P0
s
=P1, if

both contain the same set of clauses. I.e. For each clause ci ∈ P0 there is a structurally
equivalent clause cj ∈ P1 and for each clause cj ∈ P1 there is a structurally equivalent
clause ci ∈ P0:

∀ci∃cj : ci
s
= cj, ci ∈ P0, cj ∈ P1

∀cj∃ci : ci
s
= cj, ci ∈ P0, cj ∈ P1

24

Satoku Matrix

A minimal DNF bm is a disjunction of single literal conjunctions. E.g., ((p)∨(q)∨(r)):

[// OR

[1 _ _] // AND

[_ 1 _] // AND

[_ _ 1] // AND

]

p q r

The set of variables V for bm consists of all variables implied by the single literal
conjunctions of a minimal DNF bm.

The set of conjunctions over the power set of literals over V without the conjunctions
evaluating to F is denoted as Cp. The conjunction cp denotes a member of Cp ∪ {T}.
(It’s really not that hard: cp is either empty (T) or any conjunction of literals.)

The conflict bias set B is defined as the set of DNFs which are all logically equivalent
to the minimal DNF bm. A member of B is said to represent the minimal DNF bm.

The expansion algorithm E is defined as:

1. Expand a conjunction ci ∈ b, b ∈ B, that does not contain a variable p ∈ V , by
replacing ci with two conjunctions cj = ci ∧ p and ck = ci ∧ ¬p

2. Remove all redundant conjunctions cj, ci 6= cj, ci
s
= cj.

Applying algorithm E recursively to a DNF b ∈ B until the result of E(b) is struc-
turally equivalent to its input, E(b)

s
= b, generates the fully expanded representative

bf of bm. E.g.:

[// OR

[1 0 0] // AND

[1 0 1] // AND

[1 1 0] // AND

[1 1 1] // AND

[0 1 0] // AND

[0 1 1] // AND

[0 0 1] // AND

]

p q r

25

2-SAT Algorithm For Complete Set of Solutions

The fully expanded representative bf of B can be reduced to a fully discriminated
representative bd by recursively applying the discrimination algorithm D, b = D(b),
until the result is structurally equivalent to the input D(b)

s
= b⇒ b = bd:

1. If ci ∈ b and cj ∈ b are equivalent except for a single conflicting literal l,
ci = cp∧l, cj = cp∧¬l, the conflicting literal l can be removed from ci, ci 7→ ci\l,
since:

(p ∧ q) ∨ (p ∧ ¬q) = (p) ∨ (p ∧ ¬q)

2. Any conjunction cj, which is equivalent to a conjunction ci ∧ cp, ci 6= cj can be
removed from b, b 7→ b \ cj, since:

(p) ∨ (p ∧ q) = (p) ∨ (p)
(p) ∨ (p) = (p)

Examples for fully discriminated disjunctions of conjunctions:

[// OR | [// OR

[1 _ _] // AND | [_ 1 _] // AND

[0 1 _] // AND | [_ 0 1] // AND

[0 0 1] // AND | [1 0 0] // AND

] |]

p q r | p q r

All members b ∈ B can be reduced to the minimal DNF bm by recursively applying
the reduction algorithm R until no rule can be applied anymore and the result of
R(b) is structurally equivalent to its input, R(b)

s
= b:

1. Apply discrimination algorithm D.

2. If ci is a single literal conjunction (l), the literal ¬l can be removed from a
conjunction cj, cj = ¬l ∧ cp ⇒ cj 7→ cj \ ¬l, since:

(p) ∨ (¬p ∧ q) = (p) ∨ (q)

B.2.1. Conflict Bias Basics

The fully discriminated representatives bd can be interpreted as defining a conflict
bias for selections from clauses. Replacing (r) in the DNF ((p) ∨ (q) ∨ (r)) with
(¬p ∧ ¬q ∧ r) puts more weight on the selection of r, since the conflicts for the
selection are maximized.

26

Satoku Matrix

Using a conflict bias instead of the minimal DNF has various semantically different
but logically equivalent effects.

E.g., consider the following redundancy, that can be easily eliminated:

(p ∨ q) ∧ (p ∨ q ∨ r),

mapped to clause vectors:

[1 1 _] // OR

[1 1 1] // OR

p q r

Simply mapping it to a satoku matrix is pretty straightforward:

P −− −−− −− −− −−

s00 1 ◦ −−− 1 0 −− −− p ∨
s01 ◦ 1 −−− −− 1 0 −− q

s10 −− 1 ◦ ◦ 1 0 −− −− p ∨
s11 −− ◦ 1 ◦ −− 1 0 −− q ∨
s12 −− ◦ ◦ 1 −− −− 1 0 r

s20 −− −−− 1 ◦ −− −− p
s21 0 1 0−− ◦ 1 1 0 −− ¬p
s30 −− −−− −− 1 ◦ −− q
s31 1 0 −0− 1 0 ◦ 1 −− ¬q
s40 −− −−− −− −− 1 ◦ r
s41 −− −−0 −− −− ◦ 1 ¬r

.

However, applying the following conflict bias:

[// OR

[1 _ _] // AND

[0 1 _] // AND

]

[

[1 _ _] // AND

[0 1 _] // AND

[0 0 1] // AND

]

p q r

27

2-SAT Algorithm For Complete Set of Solutions

narrows the possible choices maximally:

P −− −−0 −− −− −−

s00 1 ◦ 1 0 0 1 0 −− −− p ∨
s01 ◦ 1 0 1 0 0 1 1 0 −− q

s10 1 0 1 ◦ ◦ 1 0 −− −− p ∨
s11 0 1 ◦ 1 ◦ 0 1 1 0 −− q ∨
s12 0 0 ◦ ◦ ◦ 0 0 0 0 0 0 r

s20 1 0 1 0 0 1 ◦ −− −− p
s21 0 1 0 1 0 ◦ 1 1 0 −− ¬p
s30 −− −−0 −− 1 ◦ −− q
s31 1 0 1 0 0 1 0 ◦ 1 −− ¬q
s40 −− −−0 −− −− 1 ◦ r
s41 −− −−0 −− −− ◦ 1 ¬r

,

revealing r as completely redundant, leaving only a choice between p and q, :

P −− −− −− −−

s00 1 ◦ 1 0 −− −− p ∨
s01 ◦ 1 0 1 1 0 −− q

s10 1 0 1 ◦ −− −− p
s11 0 1 ◦ 1 1 0 −− ¬p
s20 −− −− 1 ◦ −− q
s21 1 0 1 0 ◦ 1 −− ¬q
s30 −− −− −− 1 ◦ r
s31 −− −− −− ◦ 1 ¬r

.

Note that the logical equivalence between the remaining clause (p∨q) and the variable
clause (p ∨ ¬p) also means that no choice from the clauses is necessary.

28

Satoku Matrix

B.2.2. Conflict Bias Variations

Complementary conflict bias priorities for clauses S0, S1:

P −− −−− −− −− −−

s00 1 ◦ −−− 1 0 −− −− p ∨
s01 ◦ 1 −−0 0 1 1 0 −− q

s10 −− 1 ◦ ◦ −− −− 1 0 r ∨
s11 −− ◦ 1 ◦ −− 1 0 0 1 q ∨
s12 1 0 ◦ ◦ 1 1 0 0 1 0 1 p

s20 1 0 −−− 1 ◦ −− −− p
s21 0 1 −−0 ◦ 1 1 0 −− ¬p
s30 −− −−0 −− 1 ◦ −− q
s31 1 0 −0− 1 0 ◦ 1 −− ¬q
s40 −− 1 0 0 −− −− 1 ◦ r
s41 −− 0−− −− −− ◦ 1 ¬r

.

Note that selecting s00 leaves the option to select q open. Whereas selecting s12 does
not allow selecting q. this is a good example why a selection from a clause is not
the same as making a decision for a variable (equivalent to making a selection from
a variable clause).

Uniform conflict bias priorities for clauses S0, S1 by minimal occurence of a variable:

P −− −−− −− −− −−

s00 1 ◦ −−0 −− 1 0 −− q ∨
s01 ◦ 1 −0− 1 0 0 1 −− p

s10 −− 1 ◦ ◦ −− −− 1 0 r ∨
s11 1 0 ◦ 1 ◦ −− 1 0 0 1 q ∨
s12 0 1 ◦ ◦ 1 1 0 0 1 0 1 p

s20 −− −−− 1 ◦ −− −− p
s21 1 0 −−0 ◦ 1 1 0 −− ¬p
s30 1 0 −−0 −− 1 ◦ −− q
s31 0 1 −0− 1 0 ◦ 1 −− ¬q
s40 −− 1 0 0 −− −− 1 ◦ r
s41 −− 0−− −− −− ◦ 1 ¬r

.

29

2-SAT Algorithm For Complete Set of Solutions

Appendix C. Satoku Matrix Details

Mapping the following CNF 3-SAT formula:

(¬a ∨ ¬b ∨ c) ∧
(¬a ∨ b ∨ ¬c) ∧
(¬a ∨ b ∨ c) ∧
(a ∨ ¬b ∨ ¬c) ∧
(a ∨ ¬b ∨ c) ∧
(a ∨ b ∨ ¬c) ∧
(a ∨ b ∨ c)

to an inverted adjacency matrix looks like this:

1 0 0 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1
0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1
0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1
1 1 1 1 0 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1
1 0 1 0 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1
1 1 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0
1 1 1 1 1 1 1 0 0 0 1 1 0 1 1 0 1 1 0 1 1
1 0 1 1 1 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1
0 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1
1 1 1 1 0 1 1 0 1 0 1 0 1 1 1 1 0 1 1 0 1
1 1 0 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 1 1 0
0 1 1 0 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1
1 1 1 1 0 1 1 0 1 1 1 1 0 1 0 1 0 1 1 0 1
1 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1
0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1
1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 0 1 1 1
1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 0
0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0
1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 0
1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 0 0 1

30

Satoku Matrix

To further visualize the conflict situation, clause constraints are added and soft ones

are replaced by dash (-). After this rule is applied, the satoku matrix looks like this:

s00 1 ◦ ◦ −−− −−− 0−− 0−− 0−− 0−− ¬a ∨
s01 ◦ 1 ◦ −0− −0− −−− −−− −0− −0− ¬b ∨
s02 ◦ ◦ 1 −−0 −−− −−0 −−− −−0 −−− c

s10 −−− 1 ◦ ◦ −−− 0−− 0−− 0−− 0−− ¬a ∨
s11 −0− ◦ 1 ◦ −−− −0− −0− −−− −−− b ∨
s12 −−0 ◦ ◦ 1 −−0 −−− −−0 −−− −−0 ¬c
s20 −−− −−− 1 ◦ ◦ 0−− 0−− 0−− 0−− ¬a ∨
s21 −0− −−− ◦ 1 ◦ −0− −0− −−− −−− b ∨
s22 −−− −−0 ◦ ◦ 1 −−0 −−− −−0 −−− c

s30 0−− 0−− 0−− 1 ◦ ◦ −−− −−− −−− a ∨
s31 −−− −0− −0− ◦ 1 ◦ −−− −0− −0− ¬b ∨
s32 −−0 −−− −−0 ◦ ◦ 1 −−0 −−− −−0 ¬c
s40 0−− 0−− 0−− −−− 1 ◦ ◦ −−− −−− a ∨
s41 −−− −0− −0− −−− ◦ 1 ◦ −0− −0− ¬b ∨
s42 −−− −−0 −−− −−0 ◦ ◦ 1 −−0 −−− c

s50 0−− 0−− 0−− −−− −−− 1 ◦ ◦ −−− a ∨
s51 −0− −−− −−− −0− −0− ◦ 1 ◦ −−− b ∨
s52 −−0 −−− −−0 −−− −−0 ◦ ◦ 1 −−0 ¬c
s60 0−− 0−− 0−− −−− −−− −−− 1 ◦ ◦ a ∨
s61 −0− −−− −−− −0− −0− −−− ◦ 1 ◦ b ∨
s62 −−− −−0 −−− −−0 −−− −−0 ◦ ◦ 1 c

31

2-SAT Algorithm For Complete Set of Solutions

For a better overview, a status row, representing the selection status of the entire

problem is introduced. It is labeled P and behaves essentially like a matrix row. If

an entire column of the satoku matrix is filled with zeroes, the corresponding cell in

the status line becomes 0:

P −−− −−− −−− −−− −−− −−− −−−

s00 1 ◦ ◦ −−− −−− 0−− 0−− 0−− 0−− ¬a ∨
s01 ◦ 1 ◦ −0− −0− −−− −−− −0− −0− ¬b ∨
s02 ◦ ◦ 1 −−0 −−− −−0 −−− −−0 −−− c

s10 −−− 1 ◦ ◦ −−− 0−− 0−− 0−− 0−− ¬a ∨
s11 −0− ◦ 1 ◦ −−− −0− −0− −−− −−− b ∨
s12 −−0 ◦ ◦ 1 −−0 −−− −−0 −−− −−0 ¬c
s20 −−− −−− 1 ◦ ◦ 0−− 0−− 0−− 0−− ¬a ∨
s21 −0− −−− ◦ 1 ◦ −0− −0− −−− −−− b ∨
s22 −−− −−0 ◦ ◦ 1 −−0 −−− −−0 −−− c

s30 0−− 0−− 0−− 1 ◦ ◦ −−− −−− −−− a ∨
s31 −−− −0− −0− ◦ 1 ◦ −−− −0− −0− ¬b ∨
s32 −−0 −−− −−0 ◦ ◦ 1 −−0 −−− −−0 ¬c
s40 0−− 0−− 0−− −−− 1 ◦ ◦ −−− −−− a ∨
s41 −−− −0− −0− −−− ◦ 1 ◦ −0− −0− ¬b ∨
s42 −−− −−0 −−− −−0 ◦ ◦ 1 −−0 −−− c

s50 0−− 0−− 0−− −−− −−− 1 ◦ ◦ −−− a ∨
s51 −0− −−− −−− −0− −0− ◦ 1 ◦ −−− b ∨
s52 −−0 −−− −−0 −−− −−0 ◦ ◦ 1 −−0 ¬c
s60 0−− 0−− 0−− −−− −−− −−− 1 ◦ ◦ a ∨
s61 −0− −−− −−− −0− −0− −−− ◦ 1 ◦ b ∨
s62 −−− −−0 −−− −−0 −−− −−0 ◦ ◦ 1 c

32

Satoku Matrix

Finally, the original SAT problem is augmented with some tautologies to represent
the (possible) selection of either a variable or its negation:

(¬a ∨ ¬b ∨ c) ∧
(¬a ∨ b ∨ ¬c) ∧
(¬a ∨ b ∨ c) ∧
(a ∨ ¬b ∨ ¬c) ∧
(a ∨ ¬b ∨ c) ∧
(a ∨ b ∨ ¬c) ∧
(a ∨ b ∨ c) ∧
(a ∨ ¬a) ∧
(b ∨ ¬b) ∧
(c ∨ ¬c)

Proof : For all propositional formulas P the following statement is true:

P ∧ (p ∨ ¬p) p ∨ ¬p = T

= P ∧ T p ∧ T = p
= P

Since these tautologies are entirely optional, they are separated from the original core
problem (upper left matrix region) by a double line.

Note, that so far nothing has happened to the regular inverted adjacency matrix. The
information is exactly the same, only the visual representation is different.

33

2-SAT Algorithm For Complete Set of Solutions

P −−− −−− −−− −−− −−− −−− −−− −− −− −−

s00 1 ◦ ◦ −−− −−− 0−− 0−− 0−− 0−− 0 1 −− −− ¬a ∨
s01 ◦ 1 ◦ −0− −0− −−− −−− −0− −0− −− 0 1 −− ¬b ∨
s02 ◦ ◦ 1 −−0 −−− −−0 −−− −−0 −−− −− −− 1 0 c

s10 −−− 1 ◦ ◦ −−− 0−− 0−− 0−− 0−− 0 1 −− −− ¬a ∨
s11 −0− ◦ 1 ◦ −−− −0− −0− −−− −−− −− 1 0 −− b ∨
s12 −−0 ◦ ◦ 1 −−0 −−− −−0 −−− −−0 −− −− 0 1 ¬c
s20 −−− −−− 1 ◦ ◦ 0−− 0−− 0−− 0−− 0 1 −− −− ¬a ∨
s21 −0− −−− ◦ 1 ◦ −0− −0− −−− −−− −− 1 0 −− b ∨
s22 −−− −−0 ◦ ◦ 1 −−0 −−− −−0 −−− −− −− 1 0 c

s30 0−− 0−− 0−− 1 ◦ ◦ −−− −−− −−− 1 0 −− −− a ∨
s31 −−− −0− −0− ◦ 1 ◦ −−− −0− −0− −− 0 1 −− ¬b ∨
s32 −−0 −−− −−0 ◦ ◦ 1 −−0 −−− −−0 −− −− 0 1 ¬c
s40 0−− 0−− 0−− −−− 1 ◦ ◦ −−− −−− 1 0 −− −− a ∨
s41 −−− −0− −0− −−− ◦ 1 ◦ −0− −0− −− 0 1 −− ¬b ∨
s42 −−− −−0 −−− −−0 ◦ ◦ 1 −−0 −−− −− −− 1 0 c

s50 0−− 0−− 0−− −−− −−− 1 ◦ ◦ −−− 1 0 −− −− a ∨
s51 −0− −−− −−− −0− −0− ◦ 1 ◦ −−− −− 1 0 −− b ∨
s52 −−0 −−− −−0 −−− −−0 ◦ ◦ 1 −−0 −− −− 0 1 ¬c
s60 0−− 0−− 0−− −−− −−− −−− 1 ◦ ◦ 1 0 −− −− a ∨
s61 −0− −−− −−− −0− −0− −−− ◦ 1 ◦ −− 1 0 −− b ∨
s62 −−− −−0 −−− −−0 −−− −−0 ◦ ◦ 1 −− −− 1 0 c

s70 0−− 0−− 0−− −−− −−− −−− −−− 1 ◦ −− −− a
s71 −−− −−− −−− 0−− 0−− 0−− 0−− ◦ 1 −− −− ¬a
s80 −0− −−− −−− −0− −0− −−− −−− −− 1 ◦ −− b
s81 −−− −0− −0− −−− −−− −0− −0− −− ◦ 1 −− ¬b
s90 −−− −−0 −−− −−0 −−− −−0 −−− −− −− 1 ◦ c
s91 −−0 −−− −−0 −−− −−0 −−− −−0 −− −− ◦ 1 ¬c

34

	Preface
	SAT Problems
	Independent Set Problem and Adjacency Matrix
	Satoku Matrix
	Adjacency Matrix Properties
	Classification of Boolean Values
	Requirements Update Algorithm
	Selection Logic
	Mirror Property
	Unselectable Rows, Unsatisfiability
	Soft/Hard Property, Superset Rows
	Serialized Requirement Update Algorithm
	Global Status
	Get Selection Request
	One Counts
	Row Update Request
	Superset Update Request
	Kill Row
	Zero Change
	Update Row
	Update Zeroes
	Update Superset Rows
	Update Supersets
	Update Rows

	Worst Case Running Time

	Conflicts
	Solutions
	Appendix A. Clause Vectors
	Appendix B. Rationale
	B.1. Allow Negated and Unnegated Variables in the Same Clause
	B.2. CNF vs. ConDNF, Conflict Bias
	B.2.1. Conflict Bias Basics
	B.2.2. Conflict Bias Variations

	Appendix C. Satoku Matrix Details

